Testing Lorentz and CPT invariance with ZEUS data

Nathaniel Sherrill University of Sussex

MPI, Munich 28/11/2023

1. Introduction

Lorentz invariance and violation Effective description

2. Hadronic processes

- Quark-sector effects Sidereal oscillations Lorentz-violating parton model
- 3. ZEUS search
 - Data
 - Strategy
 - **□** Results

Observer vs. particle transformations

In Lorentz-*invariant* theories **observer** and **particle** transformations yield indistinguishable effects

= coordinates/observer

Observer vs. particle transformations

In Lorentz-*violating* theories **observer** and **particle** transformations are generically *inequivalent*

= coordinates/observer

= Lorentz-violating background field

$V(\phi) = (\phi^2 \pm \lambda^2)^2$

$V(\phi) = (\phi^2 + \lambda^2)^2$

Higgs analogy

Vacuum

Vacuum

 $\langle \phi \rangle = \lambda$

Higgs analogy

"Isotropic" vev

$V(\vec{B}) = (\vec{B}^2 - \vec{\lambda}^2)^2$

Higgs analogy

*"An*isotropic" vev ⇒Lorentz violation

 $\langle B^{\mu} \rangle \equiv b^{\mu}$ matter can couple to background

 $\mathscr{L}'_{\text{int}} \supset -b_{\mu} \bar{\psi} \gamma_5 \gamma^{\mu} \psi$

CPT-odd operator

Lorentz- and CPT-violating effect!

Standard-Model Extension (SME)

SME = Lorentz- and CPT-violating effective field theory

SME = SM+LV

 $\mathcal{L}_{\mathrm{LV}} \supset k^{\mu \cdots} \overset{a \cdots}{\underset{\nu \cdots}{}} (x) \mathcal{O}_{\mu \cdots} \overset{\nu \cdots}{\underset{a \cdots}{}} (x)$ Minimal SME properties $SU(3) \times SU(2) \times U(1)$ structure $SU(2) \times U(1)$ breaking Renormalizability • All violate Lorentz, $\sim 1/2$ violate CPT as well Spin statistics Typically organized by mass dimension Observer Lorentz invariance Energy-momentum conservation $d \le 4$ "Minimal SME" e.g. $-a_{\mu}\bar{\psi}\gamma^{\mu}\psi$ $[a_{\mu}] = \text{GeV}$ Quantization Microcausality d > 4 "Nonminimal SME" e.g. $-\frac{1}{\Lambda}k^{\alpha\kappa\lambda\mu\nu}F_{\kappa\lambda}\partial_{\alpha}F_{\mu\nu}$ Particle Lorentz invariance CPT invariance

D. Colladay, V. A. Kostelecky, PRD 55, 6760 (1997); PRD 58, 116002 (1998);

V. A. Kostelecky, PRD 69, 105009 (2004);

V. A. Kostelecky, Z. Li, PRD 103, 024059 (2021)

Contains <u>all possible</u> terms that break Lorentz and CPT symmetry in EFT

Some effects have been strongly constrained

$$\begin{aligned} \mathscr{L}_{\text{photon}} &\supset \frac{1}{2} (k_{AF}^{\kappa}) \epsilon_{\kappa\lambda\mu\nu} A^{\lambda} F^{\mu\nu} \\ \mathscr{L}_{\text{matter}}' \supset c_{\psi}^{\mu\nu} \bar{\psi} \gamma_{\mu} i \partial_{\nu} \psi \\ \mathscr{L}_{\text{neutrino}}' \supset - (a_L)_{\beta ab} \bar{L}_a \gamma^{\beta} L_b \end{aligned}$$

Others, not so much

 $\mathscr{L}'_{\text{top}} \supset c_t^{\mu\nu} \bar{t} \gamma_{\mu} i \partial_{\nu} t \iff |c_t^{\mu\nu}| \lesssim 10^{-4}$

Data Tables for Lorentz and CPT Violation, V. A. Kostelecký, N. Russell, arXiv:0801.0287v16 (2023 version)

$$\begin{split} |(k_{AF})^{\mu}\rangle &| \lesssim 10^{-43} \text{ GeV} \\ |c_{\psi}^{\mu\nu}| \lesssim \begin{cases} 10^{-20}, \psi = e \\ 10^{-19}, \psi = p, n \end{cases} \\ |(a_L)_{\beta\mu\tau}| \lesssim 10^{-23} \text{ GeV} \end{split}$$

Unstable, QCD, and EW sectors are comparatively unexplored!

Direct access to Lorentz properties of quarks is challenging

(a) large momentum transfer

- asymptotic freedom V
- ✓ perturbative QCD
- factorization

Example: deep inelastic scattering (DIS)

0.05

August 2021

https://pdg.lbl.gov/2021

Q [GeV]

10

100

factorization (LO)

1000

Lorentz-violating quarks

Can perturbative calculations still reliably be performed?

- Notion of partons?
- □ Factorization, PDFs?
- Optical theorem, Ward identities?
- □ Gluons? NLO? ...

First studies considered unpolarized electron-proton DIS

insertions of (renormalizable) quark operators

Sidereal oscillations

Laboratories on Earth's surface are noninertial \Rightarrow observables change with time <u>Useful</u> to introduce \approx inertial Sun-Centered Frame (SCF)

Reexpress laboratory SME coeffs. in terms of fixed SCF coeffs.

 $\mu, \nu = 0, 1, 2, 3$

 $\alpha, \beta = T, X, Y, Z$

 $c_{\rm lab}^{\mu\nu} \approx R^{\mu}_{\ \alpha} R^{\nu}_{\ \beta} c_{\rm SCF}^{\alpha\beta}$

Lab coeffs. function of $\cos(\omega_{\oplus}T_{\oplus}), \sin(\omega_{\oplus}T_{\oplus}))$

Sidereal oscillations

 $\omega_{\oplus} = 2\pi/T_{\text{sid.}} \approx 2\pi/(23 \text{ h} 56 \text{ min})$ $T_{\oplus} = \text{local sidereal time}$

Six coefficient combinations induce oscillations

 $\sigma \approx \sigma_{\rm SM} [1 + c_f^{\alpha\beta} f_{\alpha\beta}(x, Q^2, T_{\oplus})]$

Simulated constraints using H1 + ZEUS neutral-current DIS @ HERA

Sidereal oscillations

H. Abramowicz et al., Eur. Phys. J. C 75, 580 (2015)

www.desy.de

Larger collision energies favored • Most sensitivity (a) low x, Q^2 Best limits ~ $\mathcal{O}(10^{-5})$

Lorentz- and CPT-violating parton model

Initial studies assumed LO parton model kinematics $k = \xi p$ (inconsistent here)

Develop Lorentz-violating analog to parton model

$$\mathscr{L}_{\psi} = \frac{1}{2} \bar{\psi} \left(\gamma^{\mu} i D_{\mu} + \widehat{\mathcal{Q}} \right) \psi$$

 $\frac{1}{2}\bar{\psi}\widehat{Q}\psi\supset-a^{\mu}\bar{\psi}\gamma_{\mu}\psi-b^{\mu}\bar{\psi}\gamma_{5}\gamma_{\mu}\psi+\cdots$ $+c^{\mu\nu}\bar{\psi}\gamma_{\mu}iD_{\nu}\psi+d^{\mu\nu}\bar{\psi}\gamma_{5}\gamma_{\mu}iD_{\nu}\psi+\cdots$ $-a^{(5)\mu\alpha\beta}\bar{\psi}\gamma_{\mu}iD_{(\alpha}iD_{\beta)}\psi+\cdots$

V. A. Kostelecký, E. Lunghi, NS, A. R. Vieira, JHEP **04**, 143 (2020) E. Lunghi, NS, A. Szczepaniak, A. R. Vieira, JHEP 04, 228 (2021)

+ h.c.

Example: $c_f^{\mu\nu}$ and $a_f^{(5)\mu\alpha\beta}$

Modified Dirac equation

 $\widetilde{k}^2 \equiv E^2 - \vec{k}^2 + \mathcal{O}(c_f^{kk}, \pm a_f^{kkk}) = 0$

Standard parton-model relation no longer holds! Consistency with factorization, covariance, and Ward identities *requires*

 $\left| (\eta^{\mu\nu} + c_f^{\mu\nu}) \gamma_{\mu} i \partial_{\nu} - a_f^{(5)\mu\alpha\beta} \gamma_{\mu} i \partial_{\alpha} i \partial_{\beta} \right| \psi_f = 0$ $(k \not\approx \xi p)!$ $k_{f}^{\mu} = \xi(p^{\mu} - c_{f}^{\mu p}) \pm \xi^{2} a_{f}^{\mu p p}$ Holds @ tree-level for electroweak interactions "Physical" quark momentum flavor, particle/antiparticle, and

spin dependent in general!

10⁵

Put ideas to test with time-dependent analysis of unpolarised DIS data

$$E_p = 920 \text{ GeV} \qquad E_{e^{\pm}} = 27.5 \text{ GeV}$$
$$\int \mathscr{L}_{\text{lumi}}(t) dt = 372 \text{ pb}^{-1}$$

DIS event selection

$$Q^{2} > 5 \text{ GeV}^{2}$$

$$E_{e^{\pm}}^{\text{scattered}} > 10 \text{ GeV}$$

$$A7 \text{ GeV} < E - p_{z} < 69 \text{ GeV}$$

$$e^{\pm} \text{ detection probability} > 0.9$$

$$1 \text{ rad} < \theta(e^{\pm})_{\text{min}} < 3 \text{ rad}$$

$$10^{4}$$

ZEUS data

ZEUS Collaboration, PRD 107, 092008 (2023)

Run period	Run range	E _p (GeV)	E _e (GeV)	<i>e</i> charge	lumi (pb ⁻¹)	δ (%
2002/03 (no pol.)	42825 - 44825	920	27.5	<i>e</i> +	0.97	
2003	45416 - 46638	920	27.5	e ⁺	2.08	
2004	47010 - 51245	920	27.5	<i>e</i> +	38.68	
2004/05	52244 - 57123	920	27.5	e	134.16	
2006	58181 - 59947	920	27.5	e	54.80	
2006/07	60005 - 62049	920	27.5	<i>e</i> +	117.24	
2007	62050 - 62637	920	27.5	<i>e</i> +	25.13	
2007 LER	70000 - 70854	460	27.5	<i>e</i> +	13.44	
2007 MER	71004 - 71401	570	27.5	<i>e</i> +	6.33	

Total # events: ≈ 45 million $x \in [7.7 \times 10^{-5}, 1]$ $Q \in [2.2,94] \text{ GeV}$

 $d\sigma$ $dx dQ^2 d\phi_{T_p}$

Instantaneous luminosity $\mathscr{L}_{lumi}(t)$ (and thus # events/sec $\propto d\sigma$) decays over ~ several hours for each fill — must account for/subtract away

Problem: $\mathscr{L}_{lumi}(t)$ not available!

Cross sections

timestamp of DIS event $\phi_{T_p} = \mathsf{Mod}(T_{\oplus}, T_p) / T_p \in [0, 1] = \text{event phase}$

Lorentz-violating signal $\Rightarrow T_p = T_{sid.} = 23.9345$ h

Cross-section ratios

Instead consider *luminosity-insensitive* double ratios of cross sections $r(PS_1, PS_2)$

 $PS_{1,2}$ are chosen cuts of phase space, e.g. $PS_1 =$

$$r(PS_1, PS_2) = \frac{\int_{PS_1} dx dQ \frac{d\sigma}{dQ \, dx \, d\phi_T}}{\int_{PS_2} dx dQ \frac{d\sigma}{dQ \, dx \, d\phi_T}} \int_{PS_2} dx dQ dq}$$

Chosen cuts:

$$Q_{\text{cut}}^2 = 20 \text{ GeV}^2 \longrightarrow \text{negligible sensitivity to}$$
$$x_{\text{cut}} = 10^{-3} \longrightarrow \text{sensitive to LV} \Rightarrow$$

Four test periods considered: $T_p = (T_{solar}, T_{sid.}, [1 h, 24 h 4 min)] = T_{test})$

$$Q^2 > Q_{\text{cut}}^2$$
 and $PS_2 = Q^2 < Q_{\text{cut}}^2$

to LV control studies

search

> no time dependence expected

ZEUS

Control studies: (Q_{cut}^2, T_{solar})

events per bin Norm . count =(total # events) × (bin width)

> Distributions follow luminosity profile

Luminosity drops out!

ZEUS

Control studies: $(Q_{cut}^2, T_{sidereal})$

Control studies: $(Q_{cut}^2, T_{test} = 1)$ ZEUS

1 hour period mixes everything

All bins expected to have similar # events (is observed)

 $(Q_{cut}^2, solar)$: systematics

To what extent do systematic uncertainties affect distributions?

ZEUS

$(Q_{cut}^2, sidereal)$: systematics

Control studies: summary

sensitive to x (e.g. high/low trigger efficiencies) $\Box d\sigma$ is also sensitive to LV effects from different x regions $\Box \Rightarrow$ perform x_{cut} analyses

□ <u>No evidence for impact of systematic uncertainties</u> in all cases ✓ \Box *Cannot* conclude the same for x_{cut} distributions since efficiencies more

ZEUS

 (x_{cut}, I_{solar})

Monte Carlo/trigger studies

 $\sigma_{\rm syst} \sim \begin{cases} 0.1\%, 1 \text{ h} \\ 0.3\%. 24 \text{ h} \end{cases}$

(not observed in any prior ZEUS studies)

Not due to known sources!

MC events

- MC events are generated based on the state of detector/luminosity tied to real data "run number"
- Used this to created MC "timestamps" and analogous distributions
- Distributions consistent with statistics alone

Check with MC events and "High"/"Low" triggers

High/Low trigger distributions

- Detector operates in different trigger configurations if # events is large ("High") vs small ("Low")
- Studied High and Low events separately
- Distributions consistent with statistics alone

Conclusions: extracted systematics are not accounted for by known detector effects

$(x_{\text{cut}}, T_{\text{test}} = 24 \text{ h} + 4 \text{ min})$ **ZEUS** 1.0

Pervasive $\sigma_{syst.}$, largest for solar distributions, many of which have low KS probabilities, could indicate a "solar-periodic" effect:

- Smaller $\sigma_{syst.}$ from sidereal distributions compatible with genuine 24 h effect diluted by $\approx \pm 4 \min(?)$
- Cannot verify this conjecture choose to *conservatively* adopt $\sigma_{\text{syst.}}$ as extracted by $2T_{\text{solar}} - T_{\text{sid}} =$ "solar shifted" phase
- Choice avoids "washing out" possible genuine sidereal effect
- Chose $N_{\text{bins}} = 100$ for analysis

$$\sigma_{\rm sid}^{\rm tot} \approx \sqrt{\left(\bar{\sigma}_{\rm stat}^{\rm sid}\right)^2 + \left(\sigma_{\rm syst.}^{\rm solar\ shift}\right)^2} =$$

x_{cut} analyses: summary

 \mathbf{U}

The theoretical ratios are calculated in each bin:

$$r_i^{\text{theo}} = \frac{N_{\text{bins}}}{2\pi} \int_{\frac{2\pi i}{N_{\text{bins}}}}^{\frac{2\pi i}{N_{\text{bins}}}} r(x > x_c)$$

$$r_{c}(x > x_{c}, x < x_{c}) = 1 - 12.8 c_{u}^{03} - 13.9 c_{u}^{33} + 0.9 (c_{u}^{11} + c_{u}^{22})$$
$$- 4.2 c_{d}^{03} - 2.9 c_{d}^{33} + 0.1 (c_{d}^{11} + c_{d}^{22})$$
$$- 3.4 c_{s}^{03} - 1.8 c_{s}^{33} + 2.9 \times 10^{-2} (c_{s}^{11})$$

 $\begin{aligned} r_{a^{(5)}}(x > x_c, x < x_c) &= 1 - 6.1 \times 10^3 \ a_u^{(5)003} + 6.8 \times 10^3 \ a_u^{(5)033} - 2.5 \times 10^3 \ a_u^{(5)333} \\ &+ 5.0 \times 10^2 \ (a_u^{(5)113} + a_u^{(5)223} - a_u^{(5)011} - a_u^{(5)022}) \\ &- 4.1 \times 10^2 \ a_d^{(5)003} + 4.7 \times 10^2 \ a_d^{(5)033} - 1.7 \times 10^2 \ a_d^{(5)333} \\ &+ 40 \ (a_d^{(5)113} + a_d^{(5)223} - a_d^{(5)011} - a_d^{(5)022}) \end{aligned}$

$x < x_{c}; \theta_{\oplus}) d\theta_{\oplus} \quad (\theta_{\oplus} = \omega_{\oplus} T_{\oplus})$

Coefficients

A subset of $c_f^{\mu\nu}$, $a_f^{(5)\mu\alpha\beta}$ coefficients contribute to sidereal oscillations

- Those that violate *rotation invariance*
- Can be determined from direct calculation, symmetry considerations

Observable coefficients defined in the SCF with indices T, X, Y, Z

$$c_f^{TX}, c_f^{TY}, c_f^{XZ}, c_f^{YZ}, c_f^{XY}, c_f^{XX-1}$$

$$a_{\rm Sf}^{(5)TXX} - a_{\rm Sf}^{(5)TYY}, a_{\rm Sf}^{(5)XXZ} - a_{\rm Sf}^{(5)YYZ}, a_{\rm Sf}^{(5)TXY}, a_{\rm Sf}^{(5)TXY}, a_{\rm Sf}^{(5)XXX}, a_{\rm Sf}^{(5)XXX}, a_{\rm Sf}^{(5)XXY}, a_{\rm Sf}^{(5)XYY}, a_{\rm Sf}^{(5)XYZ}, a_{\rm Sf}^{(5)XZZ}, a_{\rm Sf}^$$

For *u*, *d*, and *s* quarks and antiquarks: 42 coefficients contribute to signal

The theoretical ratios are calculated in each bin:

$$r_i^{\text{theo}} = \frac{N_{\text{bins}}}{2\pi} \int_{\frac{2\pi i}{N_{\text{bins}}}}^{\frac{2\pi i}{N_{\text{bins}}}} r(x > x_c)$$

Conservative approach: exclude lower and upper values of LV coefficients that yield p < 0.05

$x_{c}, x < x_{c}; \theta_{\oplus}) d\theta_{\oplus} \quad (\theta_{\oplus} = \omega_{\oplus} T_{\oplus})$

For each of the 42 coefficients for LV construct $\left(\chi^2 = \frac{1}{(\sigma_{\text{tot}}^{\text{sid}})^2} \sum_{i=1}^{N_{\text{bins}}} \left(r_i^{\text{exp}} - r_i^{\text{theo}} \right)^2 \right)$

Data reasonably described by Standard Model $\begin{cases} \chi^2_{SM} = 113.8 \\ p_{SM} = 0.16 \end{cases}$ $P_{\rm SM}$

Coefficient	Lower	Upper
$\overline{c_u^{TX}}$	-2.5×10^{-4}	6.6×10^{-5}
c_u^{TY}	-1.7×10^{-4}	9.8×10^{-5}
c_u^{XY}	-3.2×10^{-4}	4.1×10^{-5}
c_u^{XZ}	-5.4×10^{-4}	1.4×10^{-4}
c_u^{YZ}	-3.7×10^{-4}	$2.1 imes 10^{-4}$
$c_u^{XX} - c_u^{YY}$	-2.1×10^{-4}	2.5×10^{-4}
c_d^{TX}	-7.8×10^{-4}	$2.0 imes 10^{-4}$
c_d^{TY}	-5.2×10^{-4}	3.0×10^{-4}
c_d^{XY}	-1.6×10^{-3}	$2.0 imes 10^{-4}$
c_d^{XZ}	-2.7×10^{-3}	$7.0 imes 10^{-4}$
c_d^{YZ}	-1.8×10^{-3}	1.0×10^{-3}
$c_d^{XX} - c_d^{YY}$	-1.0×10^{-3}	1.2×10^{-3}
c_s^{TX}	-9.6×10^{-4}	$2.5 imes 10^{-4}$
c_s^{TY}	-6.4×10^{-4}	3.7×10^{-4}
c_s^{XY}	-2.6×10^{-3}	3.3×10^{-4}
c_s^{XZ}	-4.4×10^{-3}	1.2×10^{-3}
c_s^{YZ}	-3.0×10^{-3}	1.7×10^{-3}
$c_s^{XX} - c_s^{YY}$	-1.7×10^{-3}	2.0×10^{-3}

- First direct *experimental* constraints on all coefficients • Theory estimates from cosmic rays $|c_{\mu,d}^{\mu\nu}| \sim 10^{-21} (!)$ ^{**D**} M. Schreck, PRD **96**, 095026 (2016)
- Estimate involves significant model dependence

Coefficient	Lower (GeV ⁻¹)	Upper (GeV ⁻¹)
$\overline{a_{\mathrm{S}u}^{(5)TXX} - a_{\mathrm{S}u}^{(5)TYY}}$	-5.1×10^{-7}	4.3×10^{-7}
$a_{\mathrm{S}u}^{(5)XXZ} - a_{\mathrm{S}u}^{(5)YYZ}$	-1.7×10^{-6}	$2.0 imes 10^{-6}$
$a_{Su}^{(5)TXY}$	-8.3×10^{-8}	6.5×10^{-7}
$a_{Su}^{(5)TXZ}$	-2.9×10^{-7}	1.1×10^{-6}
$a_{Su}^{(5)TYZ}$	-4.3×10^{-7}	7.4×10^{-7}
$a_{Su}^{(5)XXX}$	-3.9×10^{-7}	1.2×10^{-7}
$a_{Su}^{(5)XXY}$	-2.3×10^{-7}	1.8×10^{-7}
$a_{Su}^{(5)XYY}$	-4.6×10^{-7}	9.2×10^{-8}
$a_{\mathrm{S}u}^{(5)XYZ}$	-2.6×10^{-6}	3.3×10^{-7}
$a_{Su}^{(5)XZZ}$	-5.4×10^{-7}	1.4×10^{-7}
$a_{\mathrm{S}u}^{(5)YYY}$	-2.9×10^{-7}	1.5×10^{-7}
$a_{\mathrm{S}u}^{(5)YZZ}$	-3.6×10^{-7}	2.1×10^{-7}
$a_{\mathrm{S}d}^{(5)TXX} - a_{\mathrm{S}d}^{(5)TYY}$	-7.3×10^{-6}	6.1×10^{-6}
$a_{\mathrm{S}d}^{(5)XXZ} - a_{\mathrm{S}d}^{(5)YYZ}$	-2.4×10^{-5}	2.8×10^{-5}
$a_{\mathrm Sd}^{(5)TXY}$	-1.2×10^{-6}	9.4×10^{-6}
$a_{\mathrm{S}d}^{(5)TXZ}$	-4.1×10^{-6}	1.6×10^{-5}
$a_{\mathrm{S}d}^{(5)TYZ}$	-6.1×10^{-6}	1.1×10^{-5}
$a_{\mathrm{S}d}^{(5)XXX}$	-5.7×10^{-6}	1.7×10^{-6}
$a_{\mathrm{S}d}^{(5)XXY}$	-3.4×10^{-6}	2.7×10^{-6}
$a_{\mathrm{S}d}^{(5)XYY}$	-6.8×10^{-6}	1.3×10^{-6}
$a_{\mathrm{S}d}^{(5)XYZ}$	-3.7×10^{-5}	4.6×10^{-6}
$a_{\mathrm{S}d}^{(5)XZZ}$	-8.1×10^{-6}	2.1×10^{-6}
$a_{\mathrm{S}d}^{(5)YYY}$	-4.3×10^{-6}	2.3×10^{-6}
$a_{\mathrm{S}d}^{(5)YZZ}$	-5.4×10^{-6}	3.1×10^{-6}

 $\Rightarrow d\sigma_{s} \sim$

□ No previous constraints exist on $a_{quark}^{(5)}$ coefficients • One possible point of comparison: effective *proton* coefficients $|a_{\text{proton}}^{(5)}| \sim 10^{-8} - 10^{-7} \text{ GeV}^{-1}$ from hydrogen transitions ^D V. A. Kostelecký, A. Vargas, PRD **92**, 056002 (2015)

These coefficients are *not* sensitive to *s* (or any sea) quarks!

$$f_{s}(x) \approx f_{\bar{s}}(x)$$

$$a_{\bar{s}}^{(5)} = -a_{s}^{(5)}$$

$$a_{s}^{(5)}f_{s}(x) + a_{\bar{s}}^{(5)}f_{\bar{s}}(x) \approx 0$$

Take-home messages

- 1. Lorentz and CPT violation from EFT
 - ☑ Minimal deviations from SM (and GR)
 - Can reliably calculate perturbative corrections
 - Can probe corrections with sensitive experiments
- 2. Parton-model extension developed
 - Path to access challenging parton-level signals
 Framework to build on/generalize (e.g. NLO effects)
- 3. ZEUS study first of its kind
 - Direct test of anisotropic (light-)quark LV/CPTV
 Foundation for future studies
 Stay tuned!

