Dark energy and the accelerating universe

Grigoris Panotopoulos

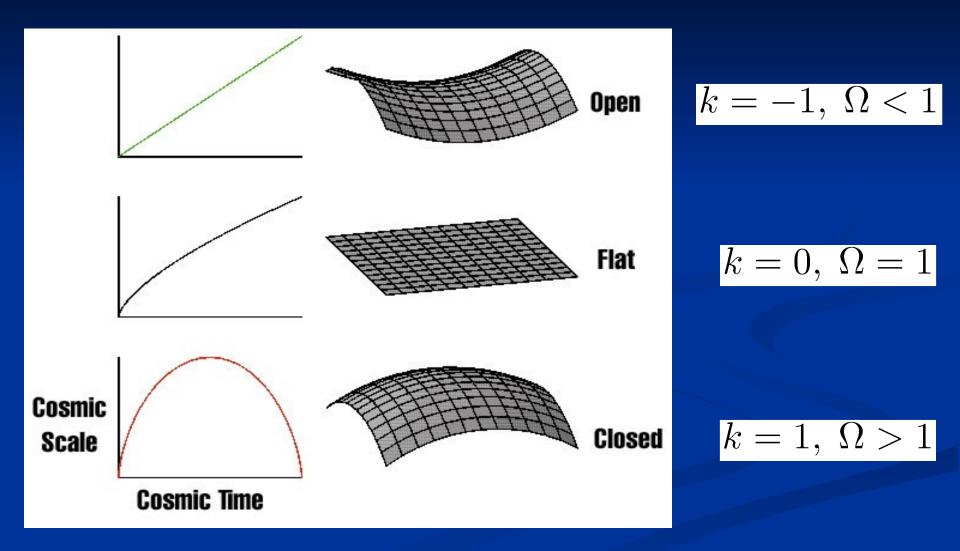
University of Valencia & IFIC

Astroparticle seminar, 4 November 2010, MPI, Munich

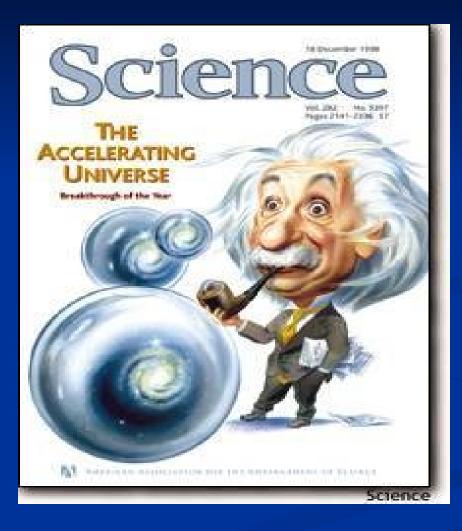
Outline

- Introduction/Motivation
- Dynamical dark energy
- Geometrical dark energy
- Statefinder diagnostics
- Conclusions

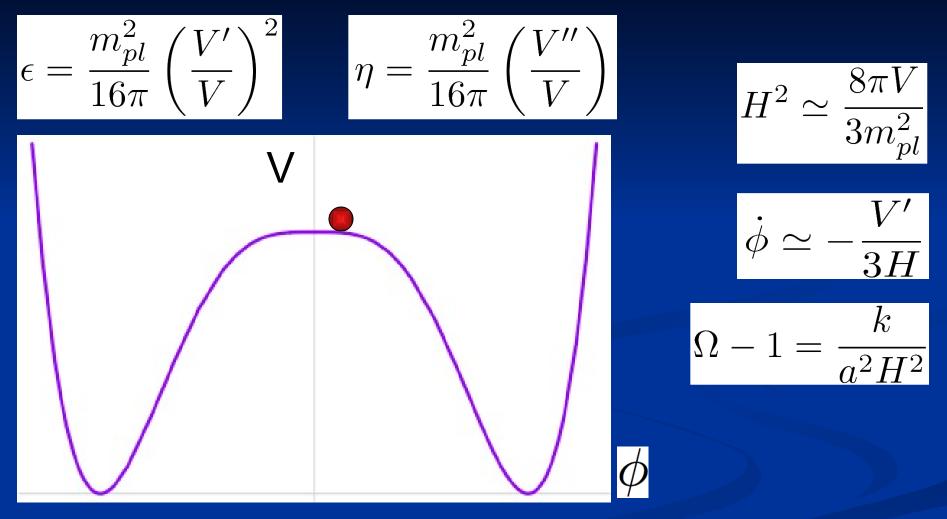
Evolution of the universe



1998: The accelerating universe breakthrough of the year



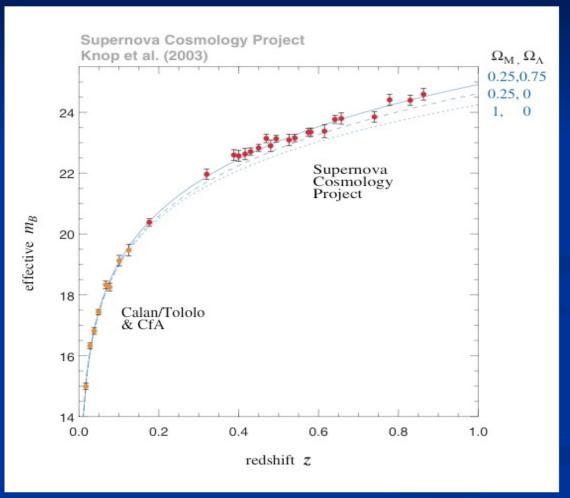
Slow-roll inflation: A paradigm for the early universe



Basic prediction of inflation: Universe is flat

Magnitude versus red-shift

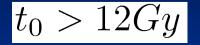
$$z = -1 + \frac{a_0}{a}$$



- Several theoretical curves
- Observational data

energy ~3/4

Age of the Universe and Hubble constant



(Universe older than oldest objects)

 $H_0 = 72Km/(Mpc\,sec)$

with matter only

$$H_0 t_0 = \frac{2}{3}$$

Universe too young

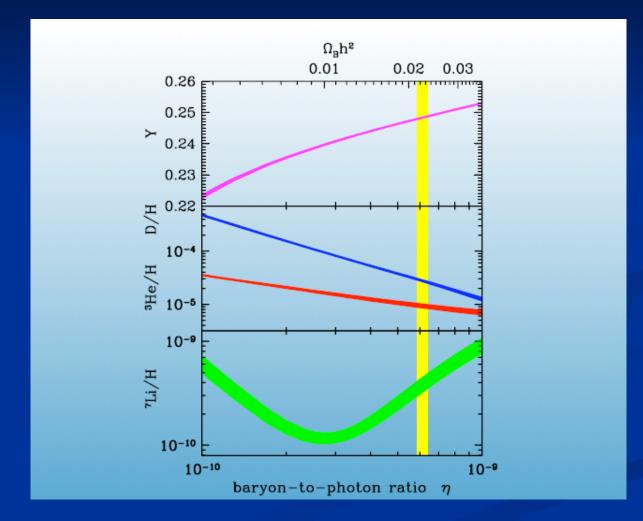
with a CC
$$\Omega_{\Lambda} = 0.7$$

 $H_0 t_0 \simeq 0.96$

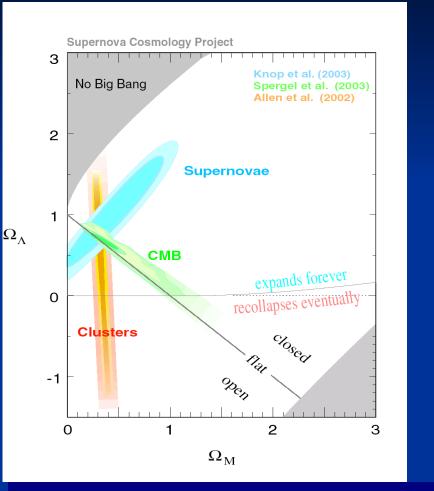
$$t_0 \simeq 13.7 \, Gy$$

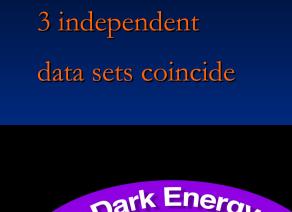
Primordial Nucleosynthesis

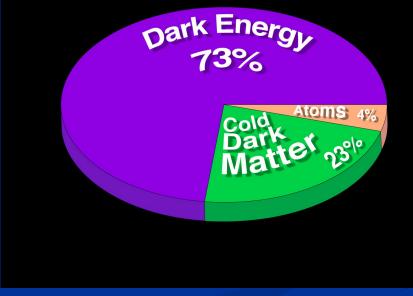
 $\Omega_b \simeq 0.04$



Today's picture of the universe







Concordance cosmological model!

MPI seminar, Munich 2010

Dark energy dominates in the (flat) universe

Energy in the universe

 \equiv

Matter 27%

(baryons 4% & cold dark matter 23%)

+

Dark energy 73%

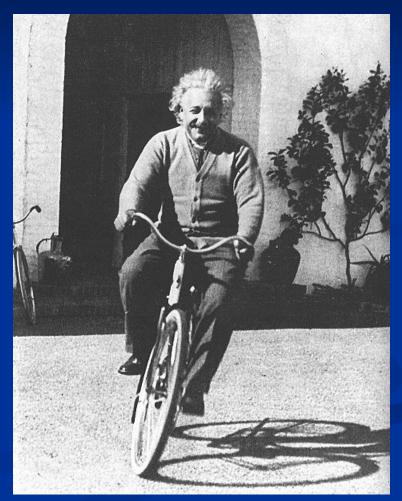
Dark energy equation of state w

■ Observations : -1.2 < w < -0.8

What is dark energy?

Cosmological constant: the simplest case

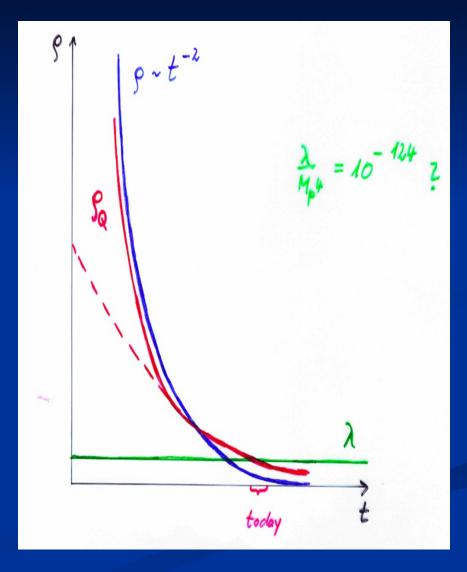
- Introduced by Einstein for a static universe
- Allowed by all symmetries
- ACDM agrees with data
- The cosmological and coincidence problems



Cosmological constant

$$\Box G_{\mu\nu} = -\Lambda g_{\mu\nu}$$

- Fluid with w=-1
- Very different evolution
- Value much lower than expected



Field equations for gravity

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

- Observation: accelerated expansion
- Theory: with matter or radiation \rightarrow decelerated expansion
- Disagreement between theory and observation

Two choices

- Geometrical dark energy
 - Modify left hand side
 - \rightarrow new gravitational theory

$$G_{\mu\nu} + G_{\mu\nu}^{dark} = T_{\mu\nu}$$

- Dynamical dark energy
 - Modify right hand side → new dynamical component

$$G_{\mu\nu} = T_{\mu\nu} + T_{\mu\nu}^{dark}$$

A very active field

S. Nojiri, S. D. Odintsov and M. Sami, arXiv:hep-th/0605039; V. Sahni and Y. Shtanov, arXiv:astro-ph/0202346; R. A. Brown, R. Maartens, E. Papantonopoulos and V. Zamarias, arXiv:gr-qc/0508116; P. S. Apostolopoulos and N. Tetradis, arXiv:hep-th/0604014; arXiv:astroph/0605450; C. Wetterich, L. P. Chimento, R. Lazkoz, R. Maartens and I. Quiros, Nucl.\ Phys.\ B 302 (1988) 668; B.Ratra and P.J.E.Peebles, Phys.\ Rev.\ D 37 (1988) 3406;

R. R. Caldwell, R. Dave and P. J. Steinhardt, arXiv:astro-ph/9708069];

Q: Why Ωs of matter and dark energy are so similar in magnitude ?

First answer

Special initial conditions: current universe finite point in phase-space

Second answer

Because of values of parameters: current universe close to a fixed point

Not so simple to realize !

Cosmology of type

$$H^2 = 2\gamma(\rho + \rho_{DE})$$

Without energy exchange

$$\dot{\rho} + 3H(\rho + p) = 0$$

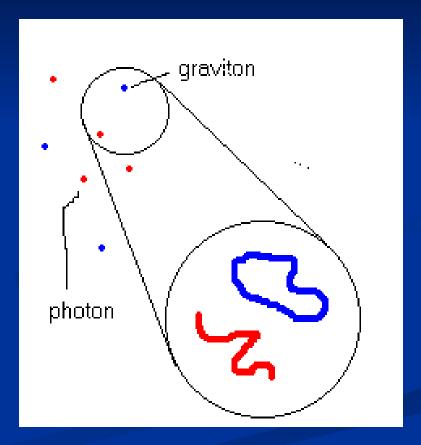
■ With energy exchange

fixed point \rightarrow deceleration

$$\dot{\rho} + 3(1+w)H\rho = -T$$
 fixed point \rightarrow acceleration
 $\dot{\rho}_{DE} + 3(1+w_{DE})H\rho_{DE} = T$

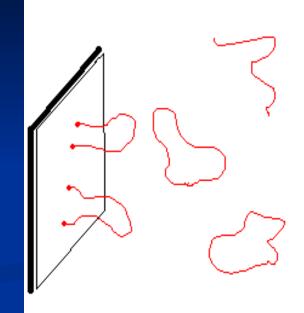
Superstring theory: basic idea

- Really fundamental objects are onedimensional (strings)
- In low energies string looks like a point-like particle
- All known particles are different oscillatory modes of the string



Extended objects: Branes

- String theory does not contain strings only
- Normally, open strings satisfy Neumann boundary conditions
- End points move at speed of light
- Dirichlet boundary conditions also make sense



- End points are stuck on a hypersurface.
- This hyperurface is interpreted as a heavy solitonic object, a D-brane.
- Brane-world idea : We are confined on such an object.

A simple brane model (Dvali, Gabadadze, Porrati, 2000)

Action

$$S = \int d^5x \sqrt{-g} M^3 R + \int d^4x \sqrt{-h} \left(m^2 \hat{R} - \mathcal{L}_{SM} \right)$$

- One extra dimension
- Gravity in 5D, our world in 4D

Reduced to known gravity and cosmology in the early universe

New gravity and cosmology in the recent times

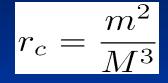
Cosmology for DGP (Deffayet, 2001)

Friedmann eqn

$$\frac{H}{r_c} = H^2 - \frac{8\pi G}{3}\rho$$

Early times
 4D Friedmann

 $Hr_c \to \infty$



Recent times

$$\rho \to 0, \; H \to \frac{1}{r_c}$$

Same number of parameters as LCDM

 $r_c \simeq H_0^{-1}$

A more realistic model (G.Kofinas, G.P., T.N.Tomaras, 2005)

$$S = \int d^5x \sqrt{-g} \left(M^3 R - \Lambda \right) + \int d^4x \sqrt{-h} \left(m^2 \hat{R} - V \right)$$

$$G_{AC} = \frac{1}{2M^3} T_{AC}|_{tot}$$

Matter

- □ in 5 dimensions (undetermined)
- Fluid on the brane

Cosmological solution

$$ds^{2} = -n(t, y)^{2}dt^{2} + a(t, y)^{2}\gamma_{ij}dx^{i}dx^{j} + b(t, y)^{2}dy^{2}$$

$$G_{00} = 3\left\{\frac{\dot{a}}{a}\left(\frac{\dot{a}}{a} + \frac{\dot{b}}{b}\right) - \frac{n^2}{b^2}\left[\frac{a''}{a} + \frac{a'}{a}\left(\frac{a'}{a} - \frac{b'}{b}\right)\right] + \frac{kn^2}{a^2}\right\}$$

$$G_{05} = 3\left(\frac{n'}{n}\frac{\dot{a}}{a} + \frac{a'}{a}\frac{\dot{b}}{b} - \frac{\dot{a}'}{a}\right)$$

$$G_{55} = 3\left\{\frac{a'}{a}\left(\frac{a'}{a} + \frac{n'}{n}\right) - \frac{b^2}{n^2}\left[\frac{\ddot{a}}{a} + \frac{\dot{a}}{a}\left(\frac{\dot{a}}{a} - \frac{\dot{n}}{n}\right)\right] - \frac{kb^2}{a^2}\right\}$$

$$G_{ij} = \frac{a^2}{b^2} \gamma_{ij} \left\{ \frac{a'}{a} \left(\frac{a'}{a} + \frac{2n'}{n} \right) - \frac{b'}{b} \left(\frac{n'}{n} + \frac{2a'}{a} \right) + \frac{2a''}{a} + \frac{n''}{n} \right\} + \frac{a^2}{n^2} \gamma_{ij} \left\{ \frac{\dot{a}}{a} \left(\frac{2\dot{n}}{n} - \frac{\dot{a}}{a} \right) - \frac{2\ddot{a}}{a} + \frac{\dot{b}}{b} \left(\frac{\dot{n}}{n} - \frac{2\dot{a}}{a} \right) - \frac{\ddot{b}}{b} \right\} - k\gamma_{ij}$$

G Panotopoulos

MPI seminar, Munich 2010

Cosmological equations

$$\dot{\rho} + 3(1+w)H\rho = -T$$
 $H^2 = \mu + 2\gamma\rho \pm \beta\psi - \frac{k}{a^2}$

$$\dot{\psi} + 2H\left(\psi - \frac{\lambda + 6(1 - 3w)\gamma\rho}{\psi}\right) = \pm \frac{2\gamma T}{\beta}$$

$$T(\rho) = A \rho^{\nu}$$

$$\frac{\ddot{a}}{a} = \mu - (1+3w)\gamma\rho \pm \beta \frac{\lambda + 6(1-3w)\gamma\rho}{\psi}$$

With new variables

$$\lambda = \frac{2V}{m^2} + \frac{12}{r_c^2} - \frac{\Lambda}{M^3} \quad \mu = \frac{V}{6m^2} + \frac{2}{r_c^2} \quad \gamma = \frac{1}{12m^2} \quad \beta = \frac{1}{\sqrt{3}r_c}$$

Final form

$$\omega_m + \omega_{\psi} = 1 \qquad ' = \frac{1}{D} \frac{d}{dt}$$

$$\omega'_m = \omega_m \Big[(1+3w)(\omega_m - 1)Z - \frac{A}{\sqrt{|\mu|}} \Big(\frac{|\mu|\omega_m}{2\gamma} \Big)^{\nu-1} (1-Z^2)^{\frac{3}{2}-\nu} -2Z(1-Z^2) \frac{1-Z^2 - 3(1-3w)\beta^2\mu^{-1}\omega_m}{1-\omega_m} \Big]$$

$$Z' = (1 - Z^2) \left[(1 - Z^2) \frac{1 - Z^2 - 3(1 - 3w)\beta^2 \mu^{-1} \omega_m}{1 - \omega_m} - 1 - \frac{1 + 3w}{2} \omega_m \right]$$

New quantities for dynamical study

$$D = \sqrt{H^2 - \mu} \quad Z = \frac{H}{D} \quad \omega_m = \frac{2\gamma\rho}{D^2} \quad \omega_\psi = \frac{\beta\psi}{D^2}$$

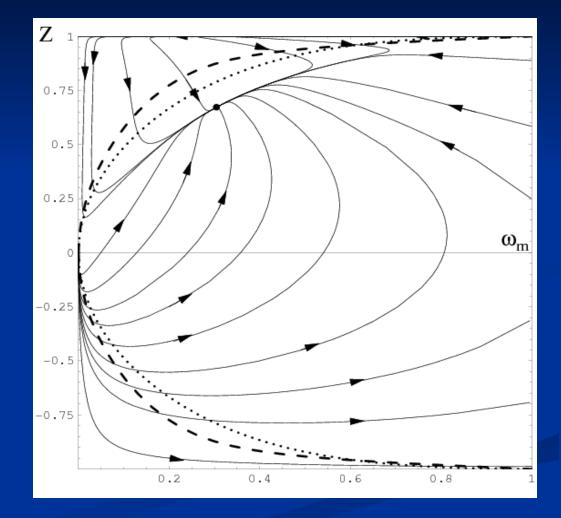
Critical points and their stability

	$\nu < 3/2$	$\nu = 3/2$	$\nu > 3/2$			
No. of F.P.	1	0 or 1	1			
Nature	А	А	S			
Table 1: The fixed points for $w=0$, influx						

	$\nu < 3/2$	$\nu = 3/2$	$3/2 < \nu < 2$	$\nu = 2$	$\nu > 2$		
No. of F.P.	1	0 or 1	0 or 2	0 or 1	1		
Nature	А	А	A,S	S	S		
Table 2: The fixed points for $w=1/3$, influx							

Numerical results for brane model

Evolution in the ω_m - Z plane for k=0, w=0, A<0



Interacting (dynamical) dark energy (Quintessence)

- CC problem OK (not vaccum energy any more)
- Why now problem \rightarrow Interaction between DE & DM
- Usually assume source $Q \propto \rho_{dm}$ (linear)
 Model with $Q \propto \rho_{dm} \rho_{\phi}$ (0911.3089, quadratic)
- Our idea: Lagrangian description & comparison to data

Our model (O.Mena, L.L.Honorez, G.P., 2010)

 $\blacksquare \quad Dark \ energy \rightarrow Canonical \ scalar \ field$

(Quintessence)

 $\Box \quad Dark matter \rightarrow Fermion$

Self-interaction potential

■ Interaction \rightarrow Lagrangian mass term for dark matter



Equations of motion

For dark matter

$$\dot{\rho}_{dm} + 3H\rho_{dm} = Q$$

For scalar field

$$\ddot{\phi} + 3H\dot{\phi} + V_{,\phi} = -Q$$

 \Box The source Q is

$$Q = \frac{\partial \ln m_{dm}(\phi)}{\partial \phi} \rho_{dm} \dot{\phi}$$

$$V(\phi) = M^4 \exp[-\alpha \phi/M_{pl}]$$

$$m_{dm}(\phi) = \exp\left[\left(V(\phi)/\rho_{cr}^0\right)^n\right]$$

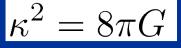
Phase-space analysis

Define new dimensionless variables

$$x^2 = \frac{\kappa^2 \dot{\varphi}^2}{6H^2}$$

$$y^2 = \frac{\kappa^2 V}{3H^2}$$

 $z = \frac{H_0}{H + H_0}$



$$\Omega_{dm} = 1 - x^2 - y^2$$

 \sim

 $\operatorname{constraint}$

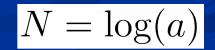
$$\frac{\dot{H}}{H^2} = -\frac{3}{2}(1+x^2-y^2)$$

New dynamical equations

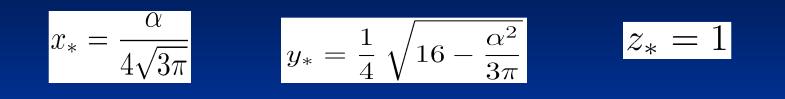
$$x' = -3x + \frac{3}{4}\frac{\alpha}{\sqrt{3\pi}}y^2 + \frac{3}{4}\frac{\alpha}{\sqrt{3\pi}}y^{2n}\frac{(1-z)^{2n}}{z^{2n}}(1-x^2-y^2) + \frac{3}{2}x(1+x^2-y^2)$$

$$y' = -\alpha \frac{\sqrt{3}}{4\sqrt{\pi}} xy + \frac{3}{2}y(1 + x^2 - y^2)$$

$$z' = \frac{3}{2}z(1-z)(1+x^2-y^2)$$



Stable fixed point \rightarrow acceleration



Existence, stability and acceleration $\longrightarrow \alpha < 4\sqrt{\pi}$

G Panotopoulos

Comparison with data

Supernovae

$$\mu = 5$$

$$d_L(z) = c(1+z) \int_0^z H(z)^{-1} dz$$

$$\mu = 5\log\left(\frac{d_L}{Mpc}\right) + 25$$

CMB

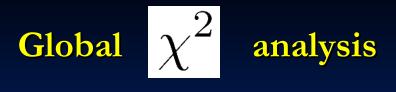
$$R = 1.7 \pm 0.03$$
 $R = (\Omega_m H_0^2)^2$

$$R = (\Omega_m H_0^2)^{1/2} \int_0^{1089} dz / H(z)$$

$A = 0.469 \pm 0.017$

BAO

$$A = \sqrt{\Omega_m H_0^2} \left(\frac{d_L(z=0.35)^2}{H(z=0.35)(1+0.35)^2 0.35^2)} \right)^{1/3}$$



□ Supernovae

$$\chi^2_{SNIa}(c_i) = \sum_{z,z'} \left(\mu(c_i, z) - \mu_{obs}(z) \right) C_{z;z'}^{-1} \left(\mu(c_i, z') - \mu_{obs}(z') \right)$$

□ CMB

$$\chi^2_{CMB}(c_i) = [(R(c_i) - R)/\sigma_R]^2$$

BAO

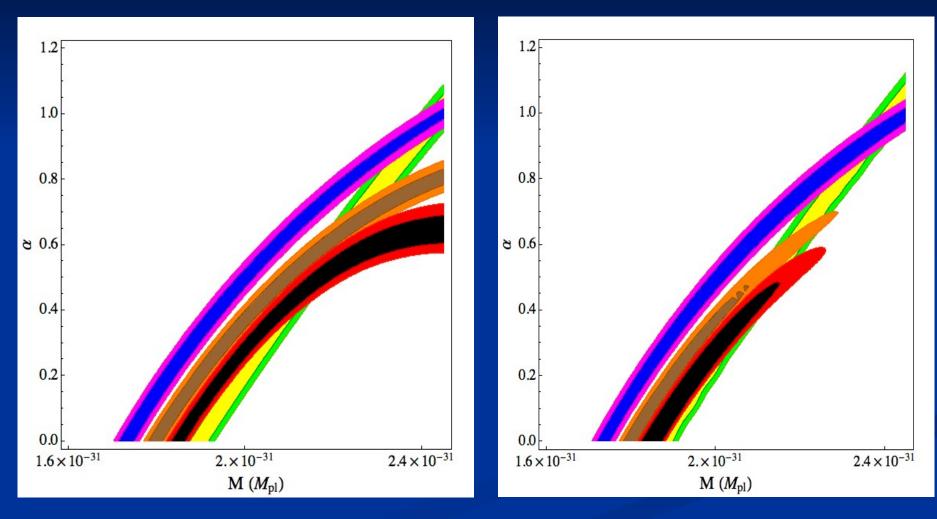
$$\chi^2_{BAO}(c_i) = \left[(A(c_i, z = 0.35) - A) / \sigma_{A(z=0.35)} \right]^2$$

$$\chi^{2}_{tot}(c_{i}) = \chi^{2}_{SNIa}(c_{i}) + \chi^{2}_{BAO}(c_{i}) + \chi^{2}_{CMB}(c_{i})$$

Numerical results for 4D model

SN alone

All data



Diagnostic for different cosmological models

- Many models with similar expansion history that cannot be excluded by data
- Quantities that can be measured and computed within model
- Appropriate quantities (Alam, Saini, Sahni, Starobinsky)

$$r = \frac{\ddot{a}}{aH^3}$$

$$s = \frac{r-1}{3(q-\frac{1}{2})}$$

$$H = \frac{\dot{a}}{a}$$

$$q = -\frac{\ddot{a}}{aH^2}$$

4D model with interacting dark energy

$$H^{2} = \frac{\kappa^{2}}{3}\rho \qquad \dot{H} = -\frac{\kappa^{2}}{2}(\rho + p) \qquad \frac{\kappa^{2} = 8\pi G}{\rho = \rho_{m} + \rho_{X}}$$
$$Q = \dot{\rho}_{m} + 3H\rho_{m} \qquad -Q = \dot{\rho}_{X} + 3H(\rho_{X} + p_{X})$$
$$p = p_{m} + p_{X} = p_{X} = w\rho_{X} \qquad Q = \delta H\rho_{m}$$

Use of dimensionless quantities

$$\Omega_m = \frac{\kappa^2 \rho_m}{3H^2} \quad \Omega_X = \frac{\kappa^2 \rho_X}{3H^2} \quad \Omega_m + \Omega_X = 1$$

Upon comparison to observational data

$$\delta = -0.03 \ w = -1.02 \ \Omega_{X,0} = 0.73$$

Statefinders for the 4D model

$$s = 1 + w + \frac{\delta}{3}(\frac{1}{\Omega_X} - 1)$$
 $r = 1 + \frac{9}{2}w\Omega_X s$

$$\Omega'_X = -(1 - \Omega_X)(\delta + 3w\Omega_X) \quad N = \ln a \quad \Omega'_m = -\Omega'_X$$

Special case: cosmological constant

$$w = -1 \quad \delta = 0 \quad s = 0 \quad r = 1$$

Critical points

Two fixed points

$$\Omega_{*,1} = 1 - \Omega_*$$
stable

$$\Omega_{*,2} = -\frac{\delta}{3w}$$
unstable

 $r = 1 + \frac{9}{2}w(1+w)$

■ At the stable critical point

$$s = 1 + w$$

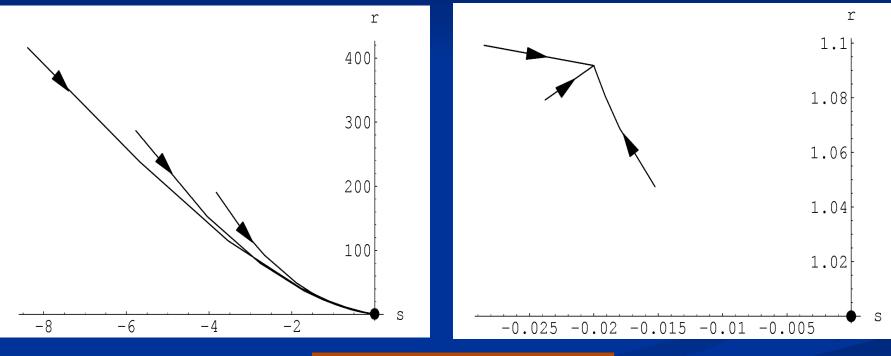
G Panotopoulos

MPI seminar, Munich 2010

(s-r) plane for two models (5D brane model, 4D model in GR)

Brane model

Interacting DE model



(G. P. 0712.1177)

Conclusions

- $\Box \quad Cosmic \ acceleration \rightarrow Dark \ energy$
- CC & LCDM: Simplest choice
- Other possibilities: Dynamical dark energy (quintessence) or geometrical dark energy (brane models)
- Statefinders: Can descriminate between different dark energy models with same expansion history