0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0																										0	0	0 0	0	0
0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0																								0	0	0	0	0 0	0	0
0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0																						0	0	0	0	0	0	0 0	0	0
0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0																							0	0	0	0	0	0 0	0	0
0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0																							0	0	0	0	0	0 0	0	0
0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0																						0	0	0	0	0	0	0 0	0	0
0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0	0	0 0																					0 0	0	0	0	0	0	0	0 0	o	0
0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0	0																						0		0	0	0	0	0	0 1	0 0	0	0
0	0	0	0	0	0	0	0	0 0	0	0	0	0	0	0																						0	0	0 0	0	0	0	0	0	0 1	0 0	0	0
0	0	0	0	0	0	0	0	0 0	0	0	0	0	0																						0			0	0	0	0	0	0	0 1	0 0	0	0
0	0	0	0	0	0	0	0	0 0	0	0	0	0																							0				0	0	0	0	0	0		0	0
0	0	0	d	6	0	<u>.</u>				0				0							-6	~		0				0		0.0					0	-		0		0		þ	0		8	0	0
0	0	0	0	L	6		•	U			V	N		0	L	6	Л	V			U				0						Α				0		_	G	0		4		2		0 0	0	0
0	0	0	0	0	0	0	0	0 0	0	0																						0	0 0	0	0	0	0	0 0	0	0	0	0	0	•	0 0	0	0
0	0	0	0	0	0	0	0	0 0																									0 0	0	0	0	0	0 0	0	0	0	0	0	•	0 0	0	0
0	0	0	0	0	0	0	0	0 0																								0	0 0	0	0	0		0 0	0	0	0	0	0	0	0 0	0	0
0	0	0	0	0	0	0	0																									0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0
0	0	0	0	0	0	0	0																									0	0 0	0	0	0	0	0 0	0	0	0	0	0	0	0 0	0	0
																															0	0	0 0	0	0	0	0		0	0	0	0	0	0	0 0	0	0
																	Λ.	NI	3		N	0	0 0	Λ		Л		0	0	١Š		-	0 0	0	0	0	0 0	0 0	0	0	0	0	0	0	0 0	0	0
																	A	IN	0	Y		-		A					J				0 0	0	0	0		0 0	0	0	0	0	0	0	0 0	0	0
																															0	0	0 0	0	0	0			0	0	0	0	0	0	0 0	0	0
																												0		0 0	0	0	0 0														
																											0 0	0	0	0 0	0	0	0 0	0													
						١					177																		0		0	0	0 0	0								1					
										[]	In	$\langle \rangle$						\/IF	РR	S	Vr		na	S	cio	nti	ot	$\Lambda \Lambda$	ork	ch	on																
						1/			- IE	-11 A	5/0	₹ \					0.0	VII			<u></u>	JUI	J.Y.			มูน	ςι,	VVV	JIN	SIL	υμ	0	0 0	0		_		<u>+</u>	★ 🛧								
						X		~										VII			F	?ir	nak		u CIC	ມແ ດລ	sı etl			sh	υþ	0	0 0	0			7	*	* *	*					e	rc	

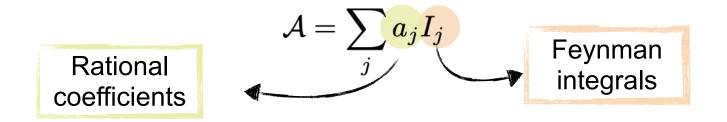
November 23th, 2023

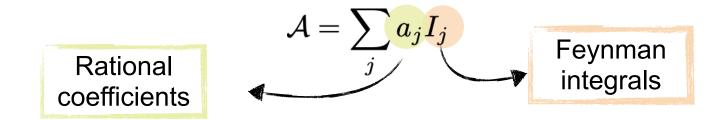
MAX-PLANCK-INSTITUT FÜR PHYSIK

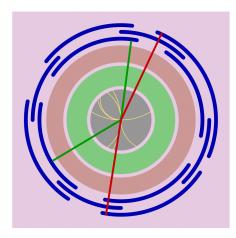
European Research Council Established by the European Commission

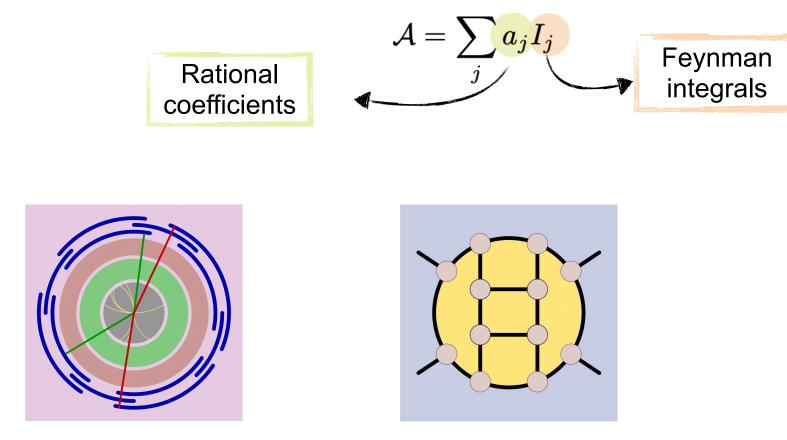
*

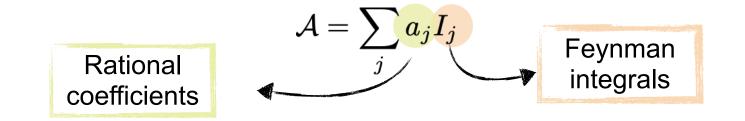
* * *

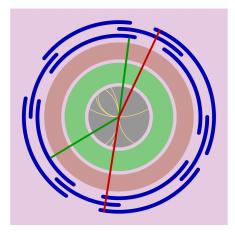


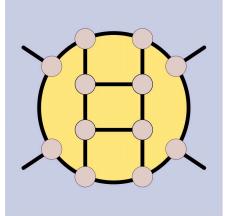


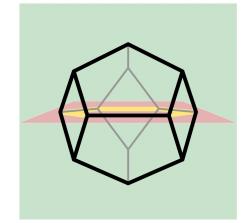








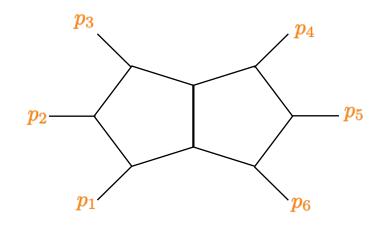




WHAT ARE FEYNMAN INTEGRALS?

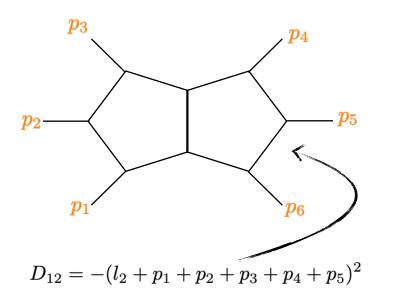
WHAT ARE FEYNMAN INTEGRALS?

Loop Feynman diagram



WHAT ARE FEYNMAN INTEGRALS?

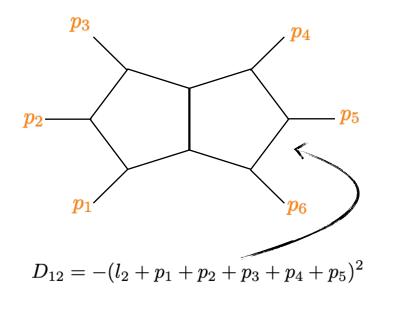
Loop Feynman diagram



+ Feynman rules

- Internal lines get propagators $1/D_i$
- Use momentum conservation at each vertex
- Integrate over loop momenta l_i

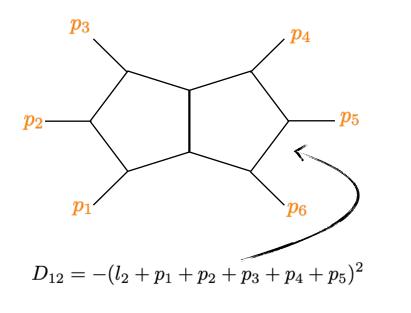
Loop Feynman diagram



- + Feynman rules = Feynman integrals
 - Internal lines get propagators $1/D_i$
 - Use momentum conservation at each vertex
 - Integrate over loop momenta l_i

$$I^{(d_0)}(\vec{v}; d_0) = e^{2\epsilon\gamma_E} \int \frac{d^{d_0 - 2\epsilon} l_1 d^{d_0 - 2\epsilon} l_2}{i\pi^{(d_0 - 2\epsilon)}} \frac{1}{D_1 \dots D_{13}}$$

Loop Feynman diagram +



- + Feynman rules = Feynman integrals
 - Internal lines get propagators $1/D_i$
 - Use momentum conservation at each vertex
 - Integrate over loop momenta l_i

$$I^{(d_0)}(\vec{v}; d_0) = e^{2\epsilon\gamma_E} \int \frac{d^{d_0 - 2\epsilon} l_1 d^{d_0 - 2\epsilon} l_2}{i\pi^{(d_0 - 2\epsilon)}} \frac{1}{D_1 \dots D_{13}}$$

Mandelstam invariants

 $\vec{v} = \{s_{12}, s_{23}, s_{34}, s_{45}, s_{56}, s_{61}, s_{123}, s_{234}, s_{345}\} \quad s_{ij} = (p_i + p_j)^2, \qquad s_{ijk} = (p_i + p_j + p_k)^2$

 The ultimate goal is to compare the result with the experiment ⇒ we need numbers

 The ultimate goal is to compare the result with the experiment ⇒ we need numbers

Numerical computation

- Sector decomposition [pySecDec]
- Auxiliary mass flow [AMFlow]
- Monte Carlo methods [feyntrop]

 The ultimate goal is to compare the result with the experiment ⇒ we need numbers

Numerical computation

- Sector decomposition [pySecDec]
- Auxiliary mass flow [AMFlow]
- Monte Carlo methods [feyntrop]

Analytic computation

- Direct integration
- Bootstrap methods
- Differential equation method

 The ultimate goal is to compare the result with the experiment ⇒ we need numbers

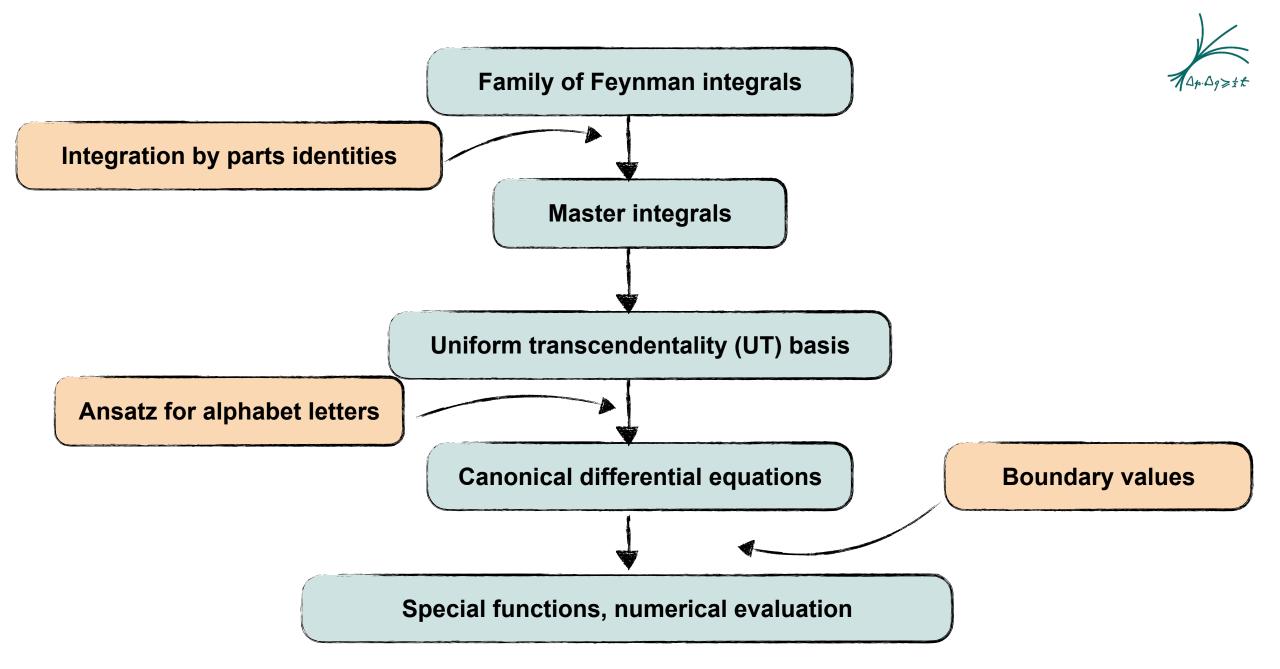
Numerical computation

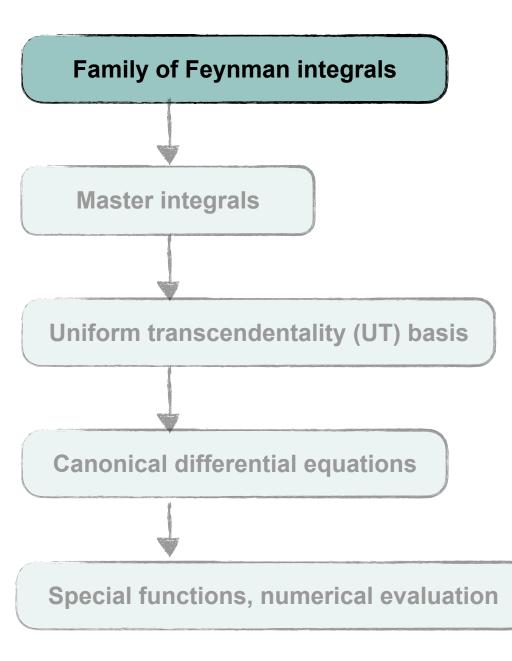
- Sector decomposition [pySecDec]
- Auxiliary mass flow [AMFlow]
- Monte Carlo methods [feyntrop]

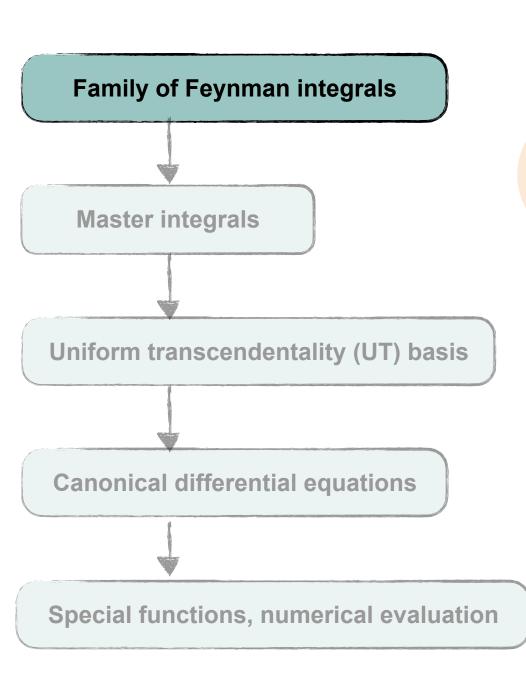
Analytic computation

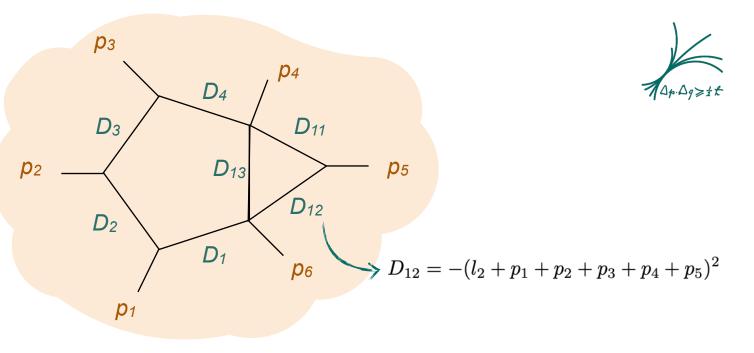
- Direct integration
- Bootstrap methods
- Differential equation method

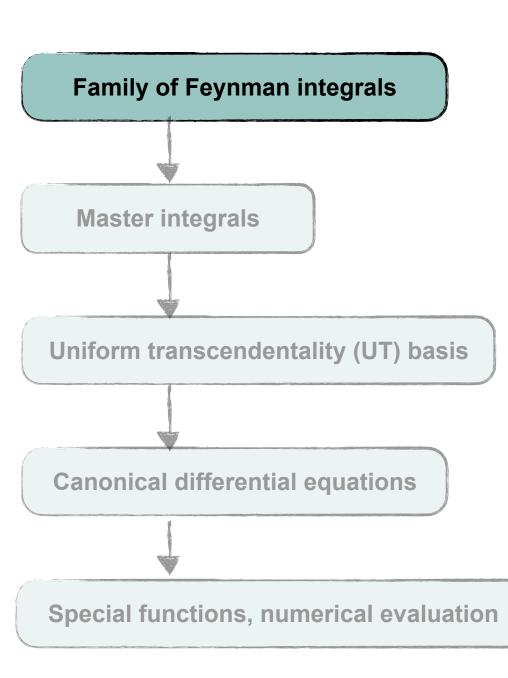
Method of choice











$$p_{3}$$

$$D_{4}$$

$$D_{11}$$

$$D_{12}$$

$$D_{12}$$

$$D_{12}$$

$$D_{12} = -(l_{2} + p_{1} + p_{2} + p_{3} + p_{4} + p_{5})^{2}$$

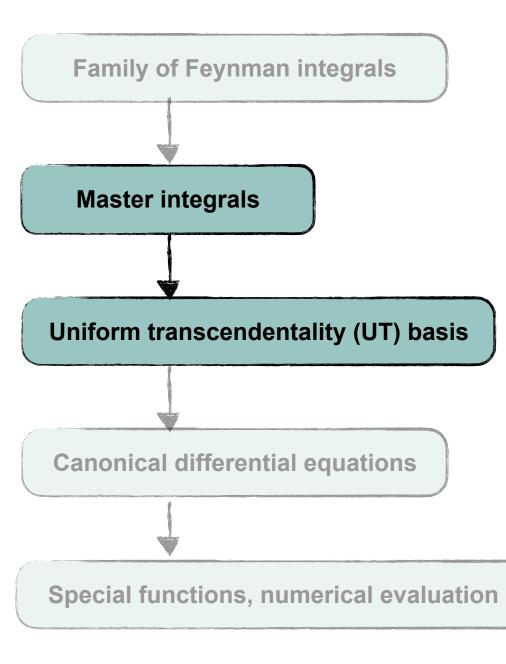
$$I^{(d_{0})}(a_{1}, ..., a_{13}) = e^{2\epsilon\gamma_{E}} \int \frac{d^{d_{0}-2\epsilon}l_{1}d^{d_{0}-2\epsilon}l_{2}}{i\pi^{(d_{0}-2\epsilon)}} \frac{1}{D_{1}^{a_{1}}...D_{13}^{a_{13}}}$$

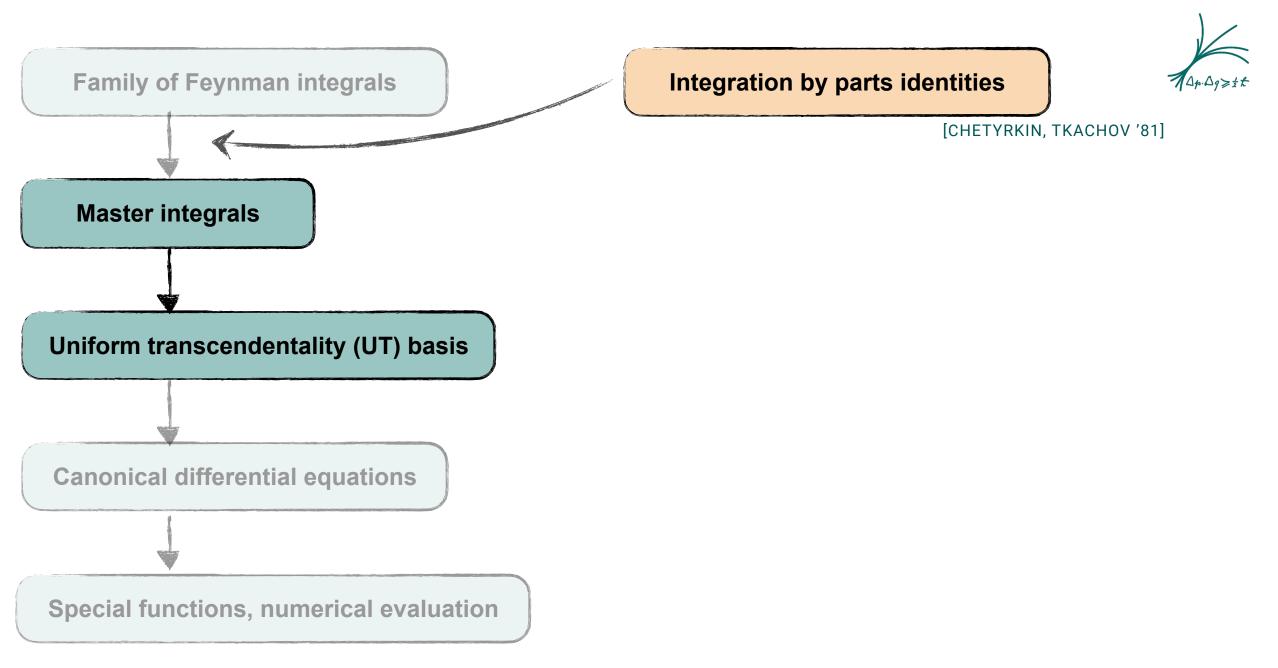
$$a_{1}, ..., a_{13} \in \mathbb{Z}$$

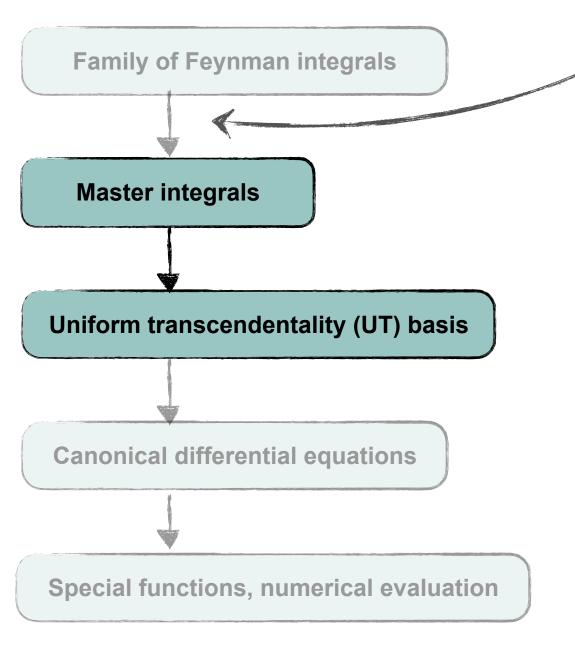
$$p_{i}^{2} = 0, \quad i = 1, ..., 6$$

$$\sum_{i=1}^{6} p_{i} = 0$$

$$p_{i} \in \mathbb{R}^{D_{ext}}$$



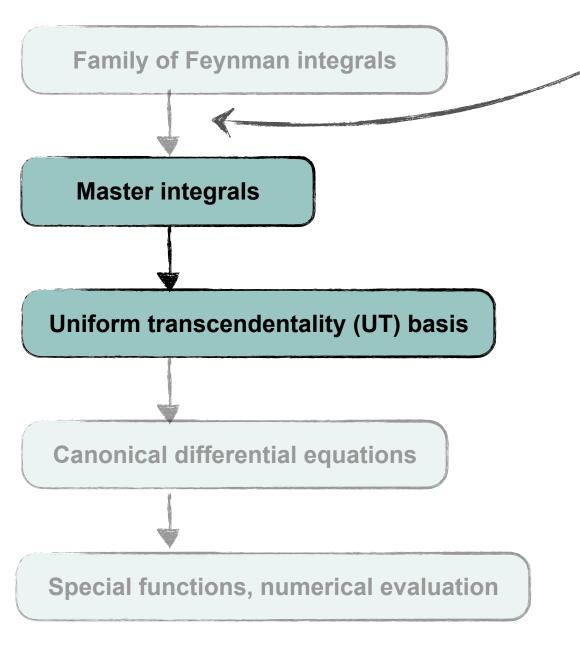




Integration by parts identities

[CHETYRKIN, TKACHOV '81]

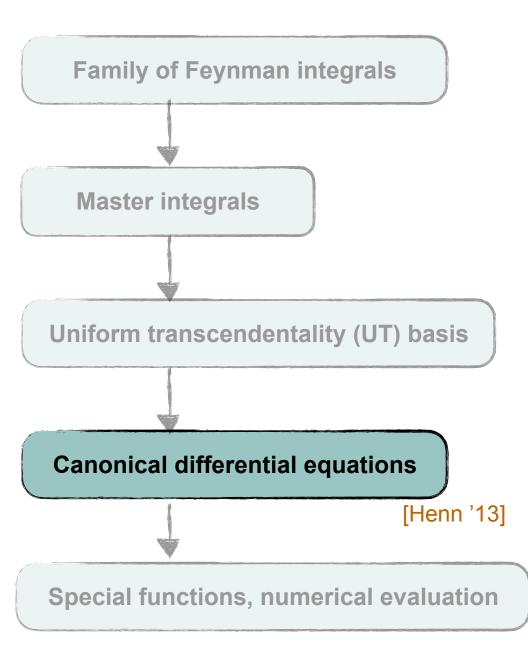
- Vanishing of total derivatives in dimensional regularization
- Relations between integrals with different powers of propagators
- A finite number of independent integrals → integral basis [Smirnov, Petukhov '11]



Integration by parts identities

[CHETYRKIN, TKACHOV '81]

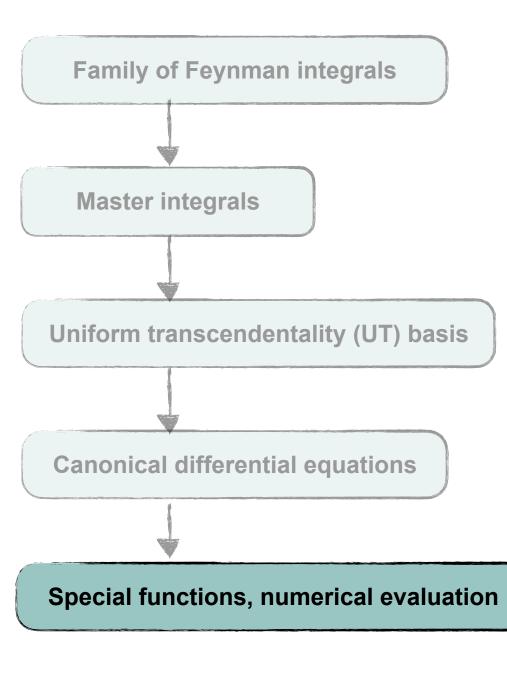
- Vanishing of total derivatives in dimensional regularization
- Relations between integrals with different powers of propagators
- A finite number of independent integrals → integral basis [Smirnov, Petukhov '11]

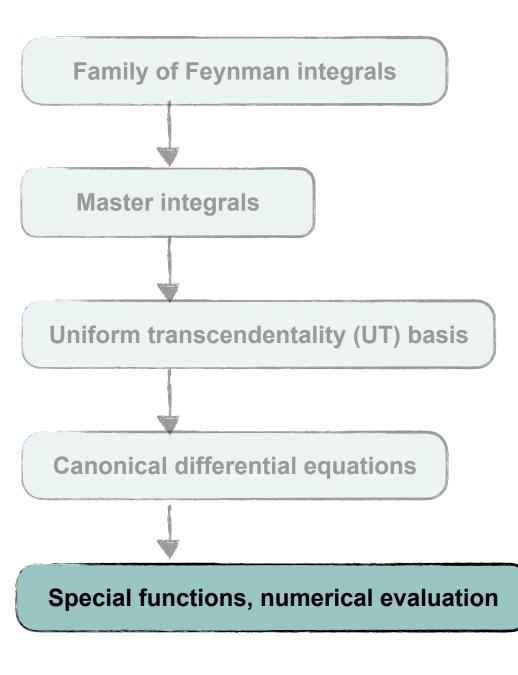


• By choosing a UT basis, we find canonical differential equations

$$d\tilde{I} = \epsilon \left[\sum_{a} c_{jk}^{a} d\log(W_{a})\right] \tilde{I}$$
vector of N
basis integrals
constant N × N
matrices
$$V = k$$

 The alphabet A encodes the singularity structure and characterizes types of functions that can appear





• We can solve the canonical differential equation $\int_{\Delta_{\mathbf{r}} \Delta_{\mathbf{f}} \geq \pm 1} \int_{\mathbf{r}} \int_{$

$$\tilde{I}^{(k)}(\vec{v}) = \sum_{k'=0}^{k} \sum_{i_1,\dots,i_{k'} \in \mathbb{A}} a^{(i_1)} \dots a^{(i_{k'})} \vec{b}^{(k)} \left[W_{i_1},\dots,W_{i_{k'}} \right]_{\vec{v}_0} (\vec{v})$$

