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Once upon a 琀椀me...
StandardModel (SM) has open ques琀椀ons

search forNew Physics (NP)

Direct
High energy searches at colliders ( TeV)

Indirect
NP would also contribute to SM decays
through virtual correc琀椀ons (o昀昀shell)

High precision in weak decays in
Experiments vs SM Predic琀椀ons

Flavour Physics
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... in B Physics

Theore琀椀cal predic琀椀ons are a昀昀ected by the
non‐perturba琀椀ve nature of hadronic QCD

However nature provided an intrinsic
perturba琀椀ve scale GeV

decays employing E昀昀ec琀椀ve Field Theories (HQET, SCET, ...)
to separate perturba琀椀ve physics from universal non‐perturba琀椀ve inputs
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Overview of QCD Factoriza琀椀on in B̄ → Dπ

Goal: compute the matrix element of four‐fermion operators Qi of the
Weak E昀昀ec琀椀ve Theory (WET)

⟨Dπ|Qi|B̄⟩ = FB→D×Ti(u)⊗φπ(u)+O
(

ΛQCD

mb,c

)

Form factor ( QCD):
to be taken from data or LQCD
Hard sca琀琀ering kernels ( ):
calculable perturba琀椀vely
Light‐cone distribu琀椀on amplitude ( QCD):
non‐perturba琀椀ve techniques
Power correc琀椀ons:
never computed exactly, in principle %
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Heavy Mesons LCDAs: Why?

They arise in factoriza琀椀on theorems involving boosted heavy mesons

meson
Hard processes at colliders:

boosted since QCD

meson
Exclusive two‐body decays:

considering QCD

Three dis琀椀nct physical scales to separate with EFT machinery!
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1 Introduc琀椀on: LCDA De昀椀ni琀椀ons

2 Matching

3 B̄ and D Meson LCDAs
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Light‐cone Distribu琀椀on Amplitude: De昀椀ni琀椀on in QCD
We take H as a pseudoscalar heavy meson and tn

µ
+ a light‐like distance

[n2
+ = 0 and n+ · p ≡ n+p is the large collinear component of p]

⟨H(pH)|Q̄(0)/n+γ
5[0, tn+]q(tn+)|0⟩ = −ifHn+pH

∫ 1

0

du eiutn+pHφ(u;µ)

φ(u) encodes the perturba琀椀ve scalemH and the non‐perturba琀椀ve ΛQCD

normalized to
highly asymmetric at
ren. scales
symmetric at scales

(from RGE)
[Efremov, Radyushkin, Brodsky, Lepage

1979,1980]
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Light‐cone Distribu琀椀on Amplitude: De昀椀ni琀椀on in HQET
In the limitmQ → ∞ we de昀椀ne the universal HQET LCDA

⟨Hv|h̄v(0)/n+γ
5[0, tn+]qs(tn+)|0⟩ = −iFstat(µ)n+v

∫ ∞

0

dω eiωtn+vϕ+(ω;µ)

ϕ+(ω) ∼ 1/ΛQCD encodes only the hadronic physics of order ΛQCD

peaked at QCD

for
[Grozin, Neubert ’96]

divergent normaliza琀椀on
perturba琀椀ve for QCD
[Lee, Neubert ’05]

valid at scales

We are looking for a factoriza琀椀on formula that connects both LCDAs!
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Collinear Factoriza琀椀on Picture
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Preliminaries: Peak & Tail Separa琀椀on
Working setup:

leading power (LP) in λ ≡ ΛQCD/mQ ≪ 1

factoriza琀椀on scale highly asymmetric LCDA!
Goal: Integra琀椀ng out at one loop

We have to match separately
peak and tail to have a
consistent power coun琀椀ng
The two resul琀椀ng func琀椀ons
have to overlap in the region

We will merge them by
choosing a threshold
parameter
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Peak & Tail Matching

• Peak u ∼ λ

φp(u) =
f̃H

fH
mHJpeakϕ+(umH)

• Tail u ∼ 1

φt(u) =
f̃H

fH
Jtail(u)

with the perturba琀椀ve matching func琀椀ons

Jpeak = 1 +
αsCF

4π

(

1

2
ln2

µ2

m2
H

+
1

2
ln

µ2

m2
H

+
π2

12
+ 2

)

Jtail(u) =
αsCF

4π

2ū

u

[

2(1 + u) ln
µ

umH

− u+ 1

]
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Merging of the Regions and LCDA Proper琀椀es

φ(u) =
f̃H

fH

{

JpeakmHϕ+(umH) , for u ∼ λ

Jtail(u) , for u ∼ 1

we have to check that
φp(u)|u≫λ

!
= φt(u)|u≪1

Proper琀椀es of

endpoint behaviour
normaliza琀椀on = 1, using

[Lee, Neubert 2005]

RG evolu琀椀on (ERBL)
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Summary

Derived factoriza琀椀on for heavy meson LCDA at LP in ΛQCD/mQ ✓

Built concrete and prac琀椀cal models for and mesons
Applied to (not shown)
Ready to apply to exclusive decays in the future!

Thank You!
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Preliminaries: Operator De昀椀ni琀椀on
Operator in QCD (momentum space)

OC(u) =

∫

dt

2π
e−iutn+pH Q̄(0) /n+γ

5[0, tn+] q(tn+)

with [0, tn+] = WC(0)W
†
C(tn+)

Feynman rules: Tree level
One gluon from the Wilson lines

Crucial: the delta func琀椀ons force the momentum frac琀椀on
coming out from the dot to assume the value
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Peak Matching (u ∼ λ): Matching Equa琀椀on
Matching equa琀椀on

OC(u) =

∫ ∞

0

dωJp(u, ω)Oh(ω)

such that

taking on both sides we can extract at from

where is the external so昀琀 momentum of the spectator quark

the comes from momentum conserva琀椀on
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Peak Matching (u ∼ λ): Result

The one loop jet func琀椀on turns
out to be propor琀椀onal to a

delta func琀椀on (as the tree level)

the LCDA in the peak region
is very simple ( ln )

This form holds to all orders in :

If a hard gluon
is emi琀琀ed by ,
contribu琀椀on to the tail!
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Q

qu

If a hard gluon
is emi琀琀ed by q̄ ⇒ u ∼ 1,
contribu琀椀on to the tail!
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Tail Matching (u ∼ 1): Matching Equa琀椀on

The external momentum pq is 昀椀xed to be so昀琀

but internal line has to be hard
the hard loop integral is insensi琀椀ve to
the tail jet func琀椀on cannot depend on !

Q

qu

We match into local HQET operators (OPE)

two independent operators
as for the decay constant matching
Simple matching since QCD mat. el. starts at one‐loop and is purely hard
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two independent operators

as for the decay constant matching O± =
1

mHn±v
h̄v/n±

γ5qs

Simple matching since QCD mat. el. starts at one‐loop and is purely hard

⟨Q(pQ)q̄(pq)|OC(u)|0⟩
u∼1

−−−−→ O(αs) ∝ J±(u)
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Tail Matching (u ∼ 1): Result
At one‐loop we 昀椀nd

Jtail(u) ≡ J+(u) + J−(u) =
αsCF

4π

2ū

u

[

(1 + u)(L− 2 lnu)− u+ 1

]

+O(α2
s)

completely perturba琀椀ve expression for the QCD LCDA in the tail

tail

with the known HQET/QCD decay constant ra琀椀o [Eichten, Hill, ’90]

ln

no琀椀ce sa琀椀s昀椀es the QCD LCDA endpoint behaviour at
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Evolu琀椀on from ΛQCD tomW : Strategy
1 Model for HQET LCDA at µs = 1GeV

ϕ+(ω;µs) =

(

1 +
αsCF

4π

[

1

2
− π2

12

])

ϕmod+ (ω;µs)

+ θ(ω −
√
eµs)ϕ

asy
+ (ω;µs) [Lee, Neubert ’05]

with asy ln
mod three generaliza琀椀ons

of the exp. model ( ) [Grozin, Neubert ’96]
[Beneke, Braun, Ji, Wei ’18]

3 Matching obtaining

2
RGE

[Lange, Neubert ’03]

4 ERBL evolu琀椀on
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QCD Factoriza琀椀on Summary [Grossman, König, Neubert 2015]

W−

b

γ

ū

B−

1/x contr.

W−

ū

γ

b

B−

1/x̄ contr.

W−

γ

ū

b

B−

Local contr.

at LP inmb/mW ≪ 1

IB± =

∫ 1

0

dxH±(x, µh)φB(x;µh)

ĪB± =

∫ 1

0

dxH±(x̄, µh)φB(x;µh)

with

Br em

Our task is to simply use our evolved LCDA for in the convolu琀椀ons
We will compare with the model from [GKN15] (with our inputs)
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(
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FB
1 = QuI

B
+ +QdĪ

B
+ FB

2 = 2(Qu −Qd)−QuI
B
− +QdĪ

B
−

Our task is to simply use our evolved LCDA for φB(x;µh) in the convolu琀椀ons
We will compare with the model from [GKN15] (with our inputs)
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HQET Factoriza琀椀on [Ishaq, Jia, Xiong, Yang 2019]

The process can be studied at 昀椀xed‐order in HQET consideringmW ∼ mb

⇒ |FB
1 | = |FB

2 | = QuI
B
± ∼ mb

ΛQCD
≫ ĪB± , Local ∼ 1

HQET

we used our inputs and model for to have a fair comparison

we checked by re‐expanding the resummed result that
hard scattering kernel LCDA evolution

ERBL
jet function
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≫ ĪB± , Local ∼ 1

|FB
1,2|HQET = Qu

f̃B(µb)

fB

∫ ∞

0

dω T (ω,mb,mW , µb)ϕ+(ω;µb)

we used our inputs and model for ϕ+(ω;µb) to have a fair comparison

we checked by re‐expanding the resummed result that

T (ω,mb,mW , µb)
∣

∣

∣

mb≪mW

=
hard scattering kernel
H±(x,mW , µh) ⊗x

LCDA evolution
fERBL(x, u, µh, µb)⊗u

jet function
Jp(u, ω,mb, µb)
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Branching Ra琀椀oW → Bγ: Numbers

Br = (2.54± 0.21in
+0.04
−0.07 µh

+0.07
−0.09 µb

+0.18
−0.13 δ

+0.59
−0.33 β

+2.86
−0.95 λB

) · 10−12

Br[GKN15] = (1.99± 0.17in
+0.03
−0.06 µh

+2.48
−0.80 λB

) · 10−12

BrHQET = (2.51± 0.21in
+0.19
−0.69 µb

+0.49
−0.40 β

+3.04
−0.95 λB

) · 10−12

central value enhanced by almost 30% w.r.t. [GKN15]
poor convergence of HQET result denoted by large scale uncertainty
huge uncertainty due to poor knowledge of HQET LCDA
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