Small black holes, light species, and the emergent string conjecture? **Carmine Montella** 

November 23, 2023

# Ingredients

- When a gravitational EFT breaks down?
- Moduli space, distance, and tower of states
- The quantum gravity scale
- Black holes, and tower of states

• The graviton is the most sociable particle of all

• The graviton is the most sociable particle of all

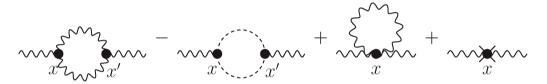
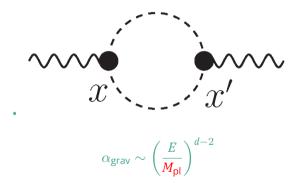
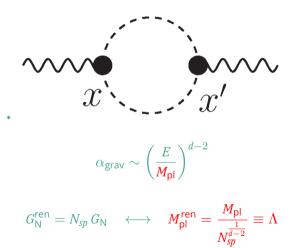





Figure: Diagrams contributing to the one-loop graviton self-energy





Carmine Montella

## Moduli space, tower of states, and distance

**Moduli space** Roughly speaking, a moduli space refers to the **space of vacuum expectation values** of **scalar fields** (and other background fields). It represents the set of all possible configurations for these fields that yield stable, classical vacuum states.

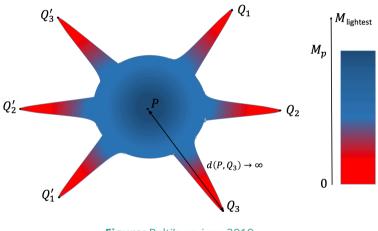



Figure: Palti's review, 2019

## Distance in the moduli space

$$\mathcal{L}_{\Phi} \supset rac{1}{2} \int_{\mathcal{M}} g_{IJ}(\Phi) \partial_{\mu} \Phi^{I} \partial^{\mu} \Phi^{J}$$

$$\Delta_{\Phi} \equiv \int_{s(P)}^{s(Q)} ds \sqrt{g_{IJ}(\Phi) \dot{\Phi}^{I}(s) \dot{\Phi}^{J}(s)}$$

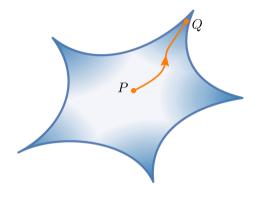



Figure: Valenzuela et al. review, 2021

# The quantum gravity scale

• 1<sup>st</sup> The UV scale

$$S_{\mathsf{eff}} \supset \frac{M_{\mathsf{pl}}^{d-2}}{2} \int d^d x \sqrt{-g} \left( R + \sum_n \frac{c_n}{\Lambda_{\mathsf{UV}}^{2n-2}} O_n\left(g, \mathsf{Riem}, \nabla\right) \right) \,.$$

## The quantum gravity scale

• 1<sup>st</sup> The UV scale

$$S_{\mathsf{eff}} \supset rac{M_{\mathsf{pl}}^{d-2}}{2} \int d^d x \sqrt{-g} \left( R + \sum_n rac{c_n}{\Lambda_{\mathsf{UV}}^{2n-2}} O_n\left(g, \mathsf{Riem}, 
abla 
ight) 
ight) \, .$$

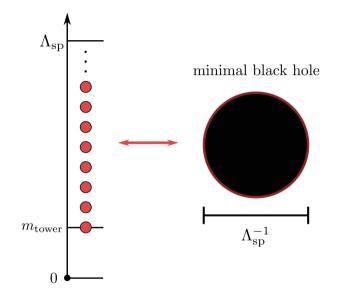
• 2<sup>nd</sup> The species scale [Dvali et al., 2009]

$$\Lambda_{\rm sp} \equiv M_{\rm pl} N_{\rm eff}^{-\frac{1}{d-2}} \ll M_{\rm pl}$$

## The quantum gravity scale

• 1<sup>st</sup> The UV scale

$$S_{\rm eff} \supset \frac{M_{\rm pl}^{d-2}}{2} \int d^d x \sqrt{-g} \left( R + \sum_n \frac{c_n}{\Lambda_{\rm UV}^{2n-2}} O_n\left(g, {\rm Riem}, \nabla\right) \right) \, .$$


• 2<sup>nd</sup> The species scale [Dvali et al., 2009]

$$L_{
m sp}^{d-2} \equiv N_{
m eff} \; (\sim S_{
m sp})$$

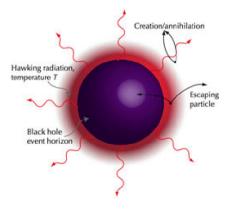
#### **Tower mass spectrum**

 $m_n = f(n) m_{\text{tow}}$ 

 $\implies \Lambda_{sp} = f(N) m_{tow}$ **Degeneracy of states**: for each level *n*, there could be  $d_n \ge 0$  states.



# **Black holes**


They are **geometric** objects:

$$ds^2 = f(r) dt^2 - \frac{dr^2}{f(r)} - r^2 d\Omega_{d-2}^2$$

$$\mathsf{S}: \mathbf{f}(\mathbf{r}) \sim 1 - rac{G_N M_{BH}}{r^{d-3}} + \mathsf{corr.}$$

They are thermodynamic objects

$$\implies \begin{cases} M_{BH} \sim R_H^{d-3} \\ S_{BH} = \frac{A_H}{4G_N} \sim R_H^{d-2} \\ T_{BH} = \frac{\kappa}{8\pi G_N} \sim R_H^{-1} \end{cases} + \text{corr.}$$

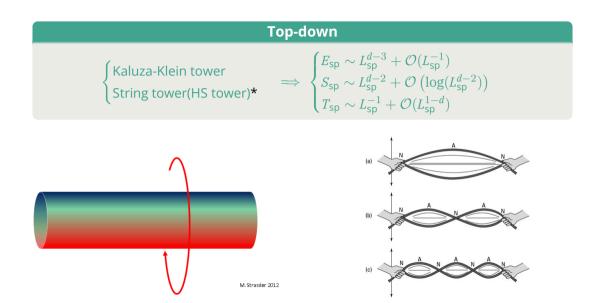


# The thermodynamic picture of the moduli space

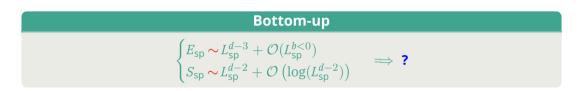
- Energy, entropy, and temperature
- Small black holes, and the moduli space
- Small black holes, and the emergent string conjecture

## Energy, entropy, and temperature

#### Energy


The minimum energy is the sum over the masses of the species present in the tower

#### Entropy


The logarithm of the number of microstates fixing the thermodynamics quantities

$$E_{\sf sp} = m_{\sf tow} \, \sum_{n=1}^N d_n f(n) + \epsilon_{grav} \,, \quad rac{E_{\sf sp}}{\epsilon_{grav}} \gg 1$$

$$S_{sp} = \log D(E_{sp})$$



## Question



What are the only **states** that can form a black hole at the **infinite distance** in the moduli space?

## Results [Basile, Lüst, CM; 2023]

## Light tower

The only light tower that can form a black hole at infinite distance in the moduli space, is a KK-like tower.

## **Heavy tower**

The only 'heavy tower' that can form a black hole at infinite distance in the moduli space, is a string-like tower.

$$\Lambda_{
m sp} \sim m_{
m tow}^{rac{1}{1+(d-2)rac{1}{p}}} \gg m_{
m tow}$$



### **Light tower**

The only light tower that can form a black hole at infinite distance in the moduli space, is a KK-like tower.

#### **Heavy tower**

The only **'heavy tower'** that can form a black hole at infinite distance in the moduli space, is a **string-like tower**.



### **Emergent string conjecture**

Any infinite field distance limit is either

- a decompactification limit, or
- a limit in which a **weakly coupled string** becomes tensionless.

Thank you!

• **The O<sup>th</sup> law**: The surface gravity  $\kappa$  is constant over the event horizon.

•

• **The O**<sup>th</sup> **law**: At fixed large distance,  $\Delta_{\phi} \gg \text{diam}(\mathcal{M})$ , the quantum gravity cut-off  $T_{sp} \sim \Lambda_{sp}$  is constant all over the moduli space.

.

- **The 0<sup>th</sup> law**: The surface gravity  $\kappa$  is constant over the event horizon.
- **The 1<sup>st</sup> law**: For two stationary black holes differing only by small variations in the parameters *M*, *Q*, and *J*

$$\delta M = \frac{\kappa}{8\pi G} \,\delta A_H + \Phi_H \,\delta Q + \Omega_H \,\delta J$$

- **The O<sup>th</sup> law**: The surface gravity  $\kappa$  is constant over the event horizon.
- The 1<sup>st</sup> law: For two stationary towers differing only by small variations  $\delta \Delta_{\phi} \geq 0$

$$\delta E_{\rm sp} = \frac{\Lambda_{\rm sp}}{8\pi G} \, \delta N_{\rm sp} + \underbrace{\Phi_{\rm sp} \, \delta Q + \Omega_{\rm sp} \, \delta J}_{\rm work \ in \ progress}$$

- **The O**<sup>th</sup> **law**: The surface gravity  $\kappa$  is constant over the event horizon.
- **The 1<sup>st</sup> law**: For two stationary black holes differing only by small variations in the parameters *M*, *Q*, and *J*

$$\delta M = \frac{\kappa}{2G} \, \delta A_H + \Phi_H \, \delta Q + \Omega_H \, \delta J$$

• The 2<sup>nd</sup> law: The area of the event horizon of a black hole never decreases

.

 $\delta A_H \geq 0$ 

- **The O**<sup>th</sup> **law**: The surface gravity  $\kappa$  is constant over the event horizon.
- **The 1<sup>st</sup> law**: For two stationary black holes differing only by small variations in the parameters *M*, *Q*, and *J*

$$\delta M = \frac{\kappa}{2G} \, \delta A_H + \Phi_H \, \delta Q + \Omega_H \, \delta J$$

• The 2<sup>nd</sup> law: The quantum gravity cut-off, at large distance  $\Delta_{\phi} \gg \text{diam}(\mathcal{M})$ , never decreases for  $\delta \Delta_{\phi} \geq 0$ 

.

 $\delta\Lambda_{\rm sp} \leq 0$ 

- **The O**<sup>th</sup> **law**: The surface gravity  $\kappa$  is constant over the event horizon.
- **The 1<sup>st</sup> law**: For two stationary black holes differing only by small variations in the parameters *M*, *Q*, and *J*

$$\delta M = \frac{\kappa}{2G} \, \delta A_H + \Phi_H \, \delta Q + \Omega_H \, \delta J$$

• The 2<sup>nd</sup> law: 2. The area of the event horizon of a black hole never decreases

 $\delta A_H \ge 0$ 

• **The 3<sup>rd</sup> law**: It is impossible by any procedure to reduce the surface gravity  $\kappa$  to zero in a finite number of steps.

**Carmine Montella** 

- **The O**<sup>th</sup> **law**: The surface gravity  $\kappa$  is constant over the event horizon.
- **The 1<sup>st</sup> law**: For two stationary black holes differing only by small variations in the parameters *M*, *Q*, and *J*

$$\delta M = \frac{\kappa}{2G} \, \delta A_H + \Phi_H \, \delta Q + \Omega_H \, \delta J$$

• The 2<sup>nd</sup> law: 2. The area of the event horizon of a black hole never decreases

 $\delta A_H \geq 0$ 

• **The 3<sup>rd</sup> law**: It is impossible by any procedure to reduce the quantum gravity cut-off  $\Lambda_{sp}$  to zero in a finite number of steps, i.e. the limit  $\Lambda_{sp} \to 0$  is at infinite distance