Phonons in Cryogenic Detectors (of COSINUS)

Speaker: Moritz Kellermann

IMPRS Young Scientist Workshop 2023

Direct detection of dark matter

Phonons:

- >90 % of nuclear recoil energy
- Measured at very low temperatures <1 K
- Common use in rare event searches
- Excellent energy resolutions up to ~eV

How to measure phonons:

- Couple cryogenic thermometers to the sample
- Measured temperature $\Delta T = \frac{\Delta E}{C}$

> More information in the next talk by Mukund

Recap: Phonons

- Crystals at T > 0 contain soundwaves of the lattice
- Analogue to photons: waves are described by bosons following Maxwell Boltzmann distribution (phonons)
- Debye model:
 - > Heat capacity of crystals at low temperatures ($T < T_D$) scales with T^3 (phononic heat capacity)
 - > In metals: linear term for free electrons (electronic heat capacity)
- Depending on the lattice and nuclear physics: different acoustic & optical modes

Phonons have a frequency (~1 THz) / energy (~10 meV) \rightarrow Energy/heat hides where the phonons are

Transition Edge Sensor (TES)

Superconducting transition

Transition Edge Sensor (TES)

Superconducting transition

Transition Edge Sensor (TES)

Superconducting transition

Thermal model for cryogenic detectors

J. Low. Temp. Phys., 100:69-104, 1995

$$C_{e} \frac{dT_{e}}{dt} + (T_{e} - T_{a})G_{ea} + (T_{e} - T_{b})G_{eb} = P_{e}(t)$$

$$C_{a} \frac{dT_{a}}{dt} + (T_{a} - T_{e})G_{ea} + (T_{a} - T_{b})G_{ab} = P_{a}(t)$$

- C_a Absorber heat capacity
- C_e Electronic heat capacity in thermometer
- *G_{ea}* Thermal coupling between phonons in absorber and electrons in thermometer
- *G_{ab}* Thermal coupling between phonons in absorber and heat bath
- *G_{eb}* Thermal coupling between electrons in thermometer and heat bath
- $P_e(t)$ Power input in thermometer
- $P_a(t)$ Power of phonons thermalizing in absorber

Thermal model for cryogenic detectors

Signals can be described with 2 components

 $\Delta T_{e}(t) = \theta(t) \left[A_{n} \left(e^{-t/\tau_{n}} - e^{-t/\tau_{in}} \right) + A_{t} \left(e^{-t/\tau_{t}} - e^{-t/\tau_{n}} \right) \right]$

Thermal model for cryogenic detectors

Signals can be described with 2 components

 $\Delta T_{e}(t) = \theta(t) \left[A_{n} \left(e^{-t/\tau_{n}} - e^{-t/\tau_{in}} \right) + A_{t} \left(e^{-t/\tau_{t}} - e^{-t/\tau_{n}} \right) \right]$

How to improve phonon collection?

(Au) Thermal link to heat bath (Al) Phonon collector film (W) Thermometer film

Properties of superconductors:

- Superconducting band gap ($Al: 0.34 \text{ meV}, T_c = 1.2 \text{ K}$)
- Electrons entangle to "Cooper pairs" that behave like bosons
- Negligible heat capacity below critical temperature T_C
- Phonons are collected into phonon collectors and break cooper pairs.
- "Quasiparticles" diffuse to thermometer and interact there

Improve by:

- Increase collection efficiency (by increasing area)
- Limited by diffusion length of quasiparticles

How to improve phonon collection?

- Phonons interact with electrons of Gold.
 - Electrons interact with electrons of TES

Improve by:

- Increase collection efficiency (by increasing area)
- Limited by added heat capacity of gold

(Au) Thermal link to heat bath

(AI) Phonon collector film

(W) Thermometer film

Shortcomings of this model

- Only the signal is considered
 - Readout circuit & noise is neglected
 - No direct translation into energy resolution
 - > more complete electro-thermal model in development by collaborators in Vienna
- Model based on many parameters
 - All parameters are temperature and structure dependent (e.g. foil vs bulk)
 - Most parameters are unknown at mK and have to be studied
 - Many measurements are taken to understand all parameters
- Real detectors are not ideal: impurities, cracks, damages & exotic geometries exist
- Position dependence on the initial nuclear recoil?

How to simulate ballistic random scattering?

How to simulate ballistic random scattering?

^{*}Multiple zones with different survival probabilities are possible

Cuboid simulation

Input parameters:

- Absorber sizes
- TES/Au-pad size + position
- Initial position
- Survival probability (on surface)
- Survival probability (at TES/Au)
- Reflection probability (at TES/Au)
- Mean free path of phonons (for dirty crystals)

Output parameters:

- # of scatters
- Total distance travelled (per phonon)
- Optional: complete path travelled

Performance: ~5 min for 10⁵ simulated phonons (100 % numpy)

What can we do with the results?

- Simulate collection efficiency of athermal phonons
- Exclude non feasible absorber geometries (e.g. very thin 2D absorbers)
- Caclulate time constant for absorption
 - Phonon path length / speed of sound = time needed to reach sensor

• 2 component fit for real measurement on silicon:

$$T_n = 56.1 \text{ ms}$$

 $T_{in} = 0.872 \text{ ms}$
 $T_t = 7.71 \text{ ms}$

- Simulation of same geometry: $\tau_{in} \sim 0.5 \text{ ms}$
- The simulation is already quite close to the measurement

Summary & Outlook

- Recoil events create phonons that can be measured with cryogenic detectors
- TES signals consist of a thermal and non-thermal part
- Increasing the collection efficiency of athermal phonons can increase energy resolution
 - Increasing the collecting area is the common method to reach this
- There are currently 3 complementary ways for detector optimization in development
 - 1. (electro-)thermal modelling
 - 2. R&D measurements with real detectors
 - 3. Simulations of phonon behaviour

Backup: Superconductivity / BCS theory

- Attractive force between electrons due to electron phonon interaction
- Intuitive picture:
 - 1. Electron moves through lattice
 - 2. Positive charge density increases following the electron
 - 3. Second electron is attracted by charge density

BCS theory in weak coupling limit ($\nu_0 D(E_F) \ll 1$)

$$\Delta_{0} = 2\hbar\omega_{D}e^{-\frac{2}{\nu_{0}}D(E_{F})}$$

$$k_{B}T_{c} = 1.14 \ \hbar w_{D}e^{-\frac{2}{\nu_{0}}D(E_{F})}$$

$$\Delta_{0} = 1.76 \ k_{B}T_{c}$$

- Δ_0 Band gap at T = 0
- $\omega_{\rm D}$ Debye frequency
- v_0 Constant for electron phonon interaction
- D(E) Density of states
- *E_F* Fermi energy
- *T*_c Critical temperature

Backup: How Quasiparticles diffuse

• Credits to M. Loidl

