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Direct detection of dark matter

Ionization

Scintillation

Phonons

Χ

➢ More information in the next talk by Mukund

Phonons:

• >90 % of nuclear recoil energy

• Measured at very low temperatures <1 K

• Common use in rare event searches

• Excellent energy resolutions up to ~eV

How to measure phonons:

• Couple cryogenic thermometers to the sample

• Measured temperature ∆� = Τ∆Ā þ
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Recap: Phonons
• Crystals at � > 0 contain soundwaves of the lattice

• Analogue to photons: waves are described by bosons following Maxwell Boltzmann distribution (phonons)

• Debye model: 

➢ Heat capacity of crystals at low temperatures (� < �ÿ) scales with �3 (phononic heat capacity)

➢ In metals: linear term for free electrons (electronic heat capacity)

• Depending on the lattice and nuclear physics: different acoustic & optical modes

Phonons have a frequency (~1 THz) / energy (~10 meV) → Energy/heat hides where the phonons are

Optical 

phonons

Acoustic

phonons
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1 cm-1 ≈ 30 GHz ≈ 0.124  meV
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Thermal model for cryogenic detectors

J. Low. Temp. Phys., 100:69–104, 1995

Ca, Ta

Ce, Te

Heat bath

Absorber

Electrons in 

thermometer

Phonons in 

thermometer

Gab Gep

GK

Geb

Tb

Pe(t)

Pa(t)

ÿ� ý��ý� + �� 2 �ÿ ��ÿ + �� 2 �Ā ��Ā = ��(�)ÿÿ ý�ÿý� + �ÿ 2 �� ��ÿ + �ÿ 2 �Ā �ÿĀ = �ÿ(�)
Gea

ÿÿ Absorber heat capacityÿ� Electronic heat capacity in thermometer��ÿ Thermal coupling between phonons in absorber
and electrons in thermometer�ÿĀ Thermal coupling between phonons in absorber
and heat bath��Ā Thermal coupling between electrons in 
thermometer and heat bath��(�) Power input in thermometer�ÿ(�) Power of phonons thermalizing in absorber
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Thermal model for cryogenic detectors

Signals can be described with 2 components∆�� � = � � �� þ Τ−� �� 2 þ Τ−� ��� + �� þ Τ−� �� 2 þ Τ−� ��
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How to improve phonon collection?

QuasiparticlesCooper pairs

Absorber

(Au) Thermal link to heat bath

(Al) Phonon collector film

(W) Thermometer film

TES

Aluminum phonon collectors

Properties of superconductors:

• Superconducting band gap (�þ: 0.34 ÿþ�, �ā = 1.2 �)
• Electrons entangle to <Cooper pairs= that behave like 

bosons

• Negligible heat capacity below critical temperature �þ
➢ Phonons are collected into phonon collectors and break 

cooper pairs.

➢ <Quasiparticles= diffuse to thermometer and interact there

Improve by:

• Increase collection efficiency (by increasing area)

• Limited by diffusion length of quasiparticles
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How to improve phonon collection?

Free electrons
Au film

(Au) Thermal link to heat bath

(Al) Phonon collector film

(W) Thermometer film

remoTES Gold pad

➢ Phonons interact with electrons of Gold.

➢ Electrons interact with electrons of TES

Improve by:

• Increase collection efficiency (by increasing area) 

• Limited by added heat capacity of gold

Absorber

Gold bond to TES

Wafer

TES
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Shortcomings of this model

TES

• Only the signal is considered

▪ Readout circuit & noise is neglected

▪ No direct translation into energy resolution

➢ more complete electro-thermal model in development by collaborators in Vienna

• Model based on many parameters

▪ All parameters are temperature and structure dependent (e.g. foil vs bulk) 

▪ Most parameters are unknown at mK and have to be studied

➢ Many measurements are taken to understand all parameters

• Real detectors are not ideal: impurities, cracks, damages & exotic geometries exist

• Position dependence on the initial nuclear recoil?
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How to simulate ballistic random scattering?
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Fixed starting
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Phonon 

died ! dying* % 

*Multiple zones with different survival probabilities are possible 

How to simulate ballistic random scattering?
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Input parameters:

• Absorber sizes

• TES/Au-pad size + position

• Initial position

• Survival probability (on surface)

• Survival probability (at TES/Au)

• Reflection probability (at TES/Au)

• Mean free path of phonons (for dirty crystals)

Output parameters:

• # of scatters

• Total distance travelled (per phonon)

• Optional: complete path travelled

Performance: ~5 min for 105 simulated phonons (100 % numpy)

Cuboid simulation
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What can we do with the results?
• Simulate collection efficiency of athermal phonons

• Exclude non feasible absorber geometries (e.g. very thin 2D absorbers)

• Caclulate time constant for absorption

• Phonon path length / speed of sound = time needed to reach sensor

• 2 component fit for real measurement on silicon:

• Simulation of same geometry: τin ~0.5 ms

➢ The simulation is already quite close to the 
measurement

τn = 56.1 ms

τin = 0.872 ms

τt = 7.71 ms
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Summary & Outlook

• Recoil events create phonons that can be measured with cryogenic detectors

• TES signals consist of a thermal and non-thermal part

• Increasing the collection efficiency of athermal phonons can increase energy resolution

▪ Increasing the collecting area is the common method to reach this

• There are currently 3 complementary ways for detector optimization in development

1. (electro-)thermal modelling

2. R&D measurements with real detectors

3. Simulations of phonon behaviour
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Backup: Superconductivity / BCS theory
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• Attractive force between electrons due to electron phonon interaction

• Intuitive picture:

1. Electron moves through lattice

2. Positive charge density increases following the electron

3. Second electron is attracted by charge density

BCS theory in weak coupling limit (�0Ā āā ≪ 1)

+ ++++

+ ++++
-

∆0= 2ℏ�ÿþ− 2�0ÿ(Ā�)ýBTc = 1.14 ℏ�ÿþ− 2�0ÿ(Ā�) ∆0= 1.76 ýý�ā
∆0 Band gap at T = 0�D Debye frequency�0 Constant for electron phonon interactionĀ(ā) Density of statesāā Fermi energy�c Critical temperature



Backup: How Quasiparticles diffuse
• Credits to M. Loidl
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