AXION Searches at INFN

Claudio Gatti - LNF

MPP Colloquium, Munich 9 April 2024

Introduction - Dark Matter

Cosmic Microwave Background - Anisotropy

 $\begin{cases} \Omega_{\Lambda} \approx 68\% \\ \Omega_{DM} \approx 26\% \\ \Omega_{b} \approx 6\% \end{cases}$

Plank 2018 results - arXiv:1807.06209

Big-Bang Nucleosynthesis

Hubble Diagram from type Ia Supernovae

Baryon Acoustic Oscillations - DESI

https://www.explainxkcd.com/wiki/index.php/2035:_Dark_Matter_Candidates

DM Candidates

https://www.explainxkcd.com/wiki/index.php/2035:_Dark_Matter_Candidates

DM Candidates

Mass $m_a = 5.70(7) \left(\frac{10^{12} GeV}{f_a}\right) \mu eV \simeq \frac{m_\pi f_\pi}{f_a}$

Present limit: $f_a > 10^9 GeV$

Coupling

$$g_{a\gamma\gamma} = \frac{\alpha_{em}}{2\pi f_a} \left(\frac{E}{N} - 1.92(4)\right)$$

Lifetime

$$\Gamma_{a \to \gamma\gamma} = \frac{g_{a\gamma\gamma}^2 m_a^3}{64\pi} = 1.1 \times 10^{-24} s^{-1} \left(\frac{m_a}{eV}\right)^5$$

Axion Limits

Stellar physics:Constraints on stellar lifetime or energy-loss rates.

Astronomy: No DM $a \rightarrow \gamma\gamma$ decays seen in the visible region from galaxies with telecopes. Similar searches with X-rays and extragalactic background light (EBL) or H ionization.

Laboratori Nazionali di Legnaro (LNL)

$$\nabla^2 E - \partial_t^2 E = -g_{a\gamma\gamma} B_0 \partial_t^2 a$$

Solving the equation inside a cylindrical resonant cavity, the signal power is

$$P_{\rm sig} = \left(g_{\gamma}^2 \frac{\alpha^2}{\pi^2} \frac{\hbar^3 c^3 \rho_a}{\Lambda^4}\right) \times \left(\frac{\beta}{1+\beta} \omega_c \frac{1}{\mu_0} B_0^2 V C_{mnl} Q_L\right)$$

 β antenna coupling to cavity V cavity volume C_{mnl} mode dependent factor about 0.6 for TM010

 Q_L cavity "loaded" quality factor

Sikivie Phys. Rev. D 32,11 (1985)

The LNL Haloscope

- B=8 T
- Dilution Refrigerator
- Tcavity 110 mK
- TWPA
- T_{noise}=2 K
- Dielectric Cavity
- Sapphire tuner
- Q=2.5×10⁵
- VC₀₃₀=0.034 L

Search for galactic axions with a traveling wave parametric amplifier PHYSICAL REVIEW D 108, 062005, arXiv:2304.7505 (2023)

High-Q Microwave Dielectric Resonator for Axion Dark-Matter Haloscopes

Reversed Kerr TWPA

6 mm transmission line composed by 700 cells made of superconducting nonlinear asymmetric inductive elements (SNAIL)

$$\begin{split} \varphi(z,t) &= \frac{1}{2} \begin{bmatrix} \mathsf{Pump} & \mathsf{Signal} \\ [A_p(z)e^{i(k_p z - \omega_p t)} + A_s(z)e^{i(k_s z - \omega_s t)} \\ &+ A_i(z)e^{i(k_i z - \omega_i t)} + \mathrm{c.c.}], \\ & \mathsf{Idler} \end{split}$$

$$\omega_s + \omega_i = 2\omega_p$$

A. Ranadive et al. Kerr reversal in josephson metamaterial and traveling wave parametric amplification. Nature Communications, 13(1):1737, Apr 2022.

Results of LNL Axion Search in 2022

Search for galactic axions with a traveling wave parametric amplifier
PHYSICAL REVIEW D 108, 062005, arXiv:2304.7505 (2023)

RUN	$\nu_c-10.353~{\rm GHz}$	Cavity Q_L	β	Ref Peak
n	(Hz)			(a.u.)
389	522 600	230000	21.6	179
392	494 100	240000	23.8	185
394	468 800	245000	24.2	186
395	468 800	245000	24.2	187
397	439 800	245000	22.7	175
399	418 500	245000	22.6	191
401	393 100	$250\ 000$	22.5	186
404	365 400	$255\ 000$	23.5	193

QUAX@LNF: The LNF Axion Haloscope

December 2023 Run

- Cavity temperature 30 mK
- Magnetic Field B=8 T
- Frequency 8.8 GHz
- Copper cavity Q₀=50,000 with tuner
- HEMT amplifier
- Tnoise 4K
- 2 weeks data taking
- 6 MHz scan

Cavity Tuning

 α (deg)

6 MHz of frequency scan

Rod Rotation Angle [deg]

Acquisition Chain

QUAX@LNF Results for 2023 Run

- 24 runs, 1 hour each, 250 kHz of frequency steps
- Average exclusion 90% c.l. $g_{a\gamma\gamma} = 2 \times 10^{-13} \ GeV^{-1}$
- Preprint arXiv:2404.19063

$\nu_c [\text{GHz}]$	Q_L	β
8.83176900	32345	0.5206
8.83203080	32228	0.519
8.83229550	32273	0.5082
8.83255580	32332	0.5141
8.83282190	32387	0.5097
8.83307310	32401	0.5078
8.83334500	32300	0.5097
8.83360070	32503	0.5058
8.83386200	32540	0.5075
8.83412790	32752	0.5014
8.83438580	32573	0.5026
8.83464620	32904	0.5005
8.83490660	32957	0.4984
8.83516350	32863	0.4951
8.83542850	32872	0.4947
8.83568970	33326	0.4881
8.83594630	33051	0.489
8.83620570	33056	0.4894
8.83646975	33104	0.4857
8.83672330	33584	0.4823
8.83698660	33529	0.4803
8.83724500	33659	0.4823
8.83750860	33639	0.4793
8.83776640	33450	0.4793

QUAX LNF&LNL 2023-2025

COLD@LNF

CryOgenic Laboratory for Detectors:

- Axion Dark Matter Experiments
- Quantum Sensing with Superconducting Devices
- Type II and HTC Superconducting Cavities

ICSC Centro Nazionale di Ricerca in HPC, Big Data and Quantum Computing

The Superconducting Qubit

θ L M

© Encyclopædia Britannica, Inc.

$$E = \frac{Q^2}{2C} - E_J \cos 2\pi \phi / \phi_0$$

Qubit in a 3D Resonator

Quantum Sensing with SC Qubits

Appl. Sci. 2024, 14(4), 1478

Quantum non-demolition detection of an itinerant photon

The qubit dephasing during the gate interval results in an erroneous phase flip of the qubit. The qubit dephasing also contributes dominantly to the dark-count probability of 0.0147 ± 0.0005.

Need to match dispersive shift with resonator width!

Dark count rate

$$R = \frac{p(1|0)}{T_2} \approx \frac{1\%}{26\,\mu s} = 385\,Hz$$

Kono et al. Nature Phys 14, 546-549 (2018)

Two Qubits Scheme

0 - Initial state

 $|Q_1Q_2
angle_{\overline{\gamma}}=|0
angle imes|0
angle$

1 - Prepare the qubits in 0+1 state

 $|Q_1Q_2\rangle = rac{1}{2}(|0
angle + |1
angle) imes (|0
angle + |1
angle)$

2a - If no photons arrive, nothing happens. Complete Ramsey cycle

 $|Q_1Q_2
angle_{\overline{\gamma}}=|0
angle imes|0
angle$

2b - If instead a photon arrives

$$\begin{aligned} |Q_1 Q_2 \rangle_{\gamma} &= \frac{1}{2} \Big(e^{-i\pi} |00\rangle + |10\rangle + |01\rangle + e^{i\pi} |11\rangle \Big) \\ &= \frac{-1}{2} (|00\rangle - |10\rangle - |01\rangle + |11\rangle) \\ &= -\frac{1}{2} (|0\rangle - |1\rangle) \times (|0\rangle - |1\rangle) \end{aligned}$$

3 - Completing the Ramsey cycle

 $|Q_1Q_2\rangle_{\gamma} = |1
angle imes |1
angle$

Dark count rate

$$R = \frac{p(1|0)^2}{T_2/2} \approx \frac{2 \times 10^{-4}}{26 \,\mu s} = 8 \,Hz$$

Appl. Sci. 2024, 14(4), 1478

Two Qubits Scheme

R&D on cavity fabrication

R&D on qubit fabrication (CNR-IFN)

QUAX LNF&LNL 2023-2025

Galactic axion search at 100 MHz (0.5-1.5 µeV)

Large Superconducting Magnets at LNF

FINUDA→FLASH

B(T)	1.1
I(A)	2845
R(m)	1.4
L(m)	2.2

KLOE→KLASH

B(T)	0.6
I(A)	2300
R(m)	2.43
L(m)	4.4

Physics of the Dark Universe 42 (2023) 101370

INFN

THE F(K)LASH Cryostat and Resonant Cavity

- KLOE/FINUDA Magnet
- Vacuum vessel made by a-magnetic stainless steel

counterweight

- Shield in aluminum alloy, to be cooled to 70 K by gaseous Helium
- OFHC Cu resonant cavity, cooled to 4.6 K by saturated liquid Helium
- 3 OFHC Cu tuning bars mounted on eccentric cranks with reduction gearboxes

Stepper motor

(2.5 µrad)

Design by FANTINI Sud Mechanical Div.

Sensitivity to Axions and ALPS

Parameter	Value
$ \nu_{c} [\mathrm{MHz}] $	150
$m_a [\mu \mathrm{eV}]$	0.62
$g_{a\gamma\gamma}^{\rm KSVZ}$ [GeV ⁻¹]	2.45×10^{-16}
Q_L	1.4×10^5
C_{010}	0.53
B_{\max} [T]	1.1
eta	2
$ au~[{ m min}]$	5
$T_{\rm sys}$ [K]	4.9
$P_{\rm sig}$ [W]	0.9×10^{-22}
Scan rate $[Hz s^{-1}]$	8
$m_a [\mu \mathrm{eV}]$	0.49 - 1.49
$g_{a\gamma\gamma}$ 90% c.l. [GeV ⁻¹]	$(1.25 - 6.06) \times 10^{-16}$

Light Primordial Black Hole Dark Matter with Ultra-high-frequency Gravitational Waves

A. Berlin Phys. Rev. D 105, 116011

Franciolini Phys. Rev. D 106, 103520 2022

FLASH Sensitivity to HFGW

Sensitivity limited also by short duration time of the HFGW from PBHs. Gain 1 or 2 order of magnitudes wrt GHz cavities:

- Signal power scales as Radius²
- Q factor effective as long as Ncycles~Q

 $t_{int} \simeq 2.72 \cdot 10^{-14} \text{ s } \times \left(\frac{M_c}{10^{-5} M_{\odot}}\right)^{-5/3} \left(\frac{\nu}{200 \text{ MHz}}\right)^{-8/3} \left(\frac{10^6}{Q}\right)$

Mode	Resonant Frequency [MHz]	Q factor (@4°K)
TM010	109.5	626e3
TM011	166.1	526e3
TM012	272.3	752e3
TM110	174.4	790e3
TM111	214.5	598e3
TM112	304.7	712e3
TM210	233.7	915e3
TM211	264.9	664e3
TM212	342.1	755e3

Commissioning of the FINUDA Magnet – Last Operated in 2007

Successful Test of the FINUDA Magnet

After a series of operations, the cryogenic plant was finally put back into operation. On Jan the 19th 2024, FINUDA was cooled down to 4 K and energized with a current of 2706 A, generating a magnetic field of 1.05 T.

Global Effort to Probe the Full QCD-Axion Band in the Next 10 Years

DARK SECTOR AT LNF

LY MILLING MILLING

46

Microwave Photon Detector Based on Current Biased JJ

Switching detector: Microwave photons trigger the transition of the JJ to the normal state

L. S. Kuzmin *et al.*, "Single Photon Counter Based on a Josephson Junction at 14 GHz for Searching Galactic Axions," in *IEEE Transactions on Applied Superconductivity*, vol. 28, no. 7, pp. 1-5, Oct. 2018, Art no. 2400505, doi: 10.1109/TASC.2018.2850019.

Microwave Photon Detector Based on Current Biased JJ

IEEE TRANS APP SUP, VOL. 32, NO. 4, 2022; doi: 10.1109/TASC.2022.3148693

IEEE TRANS APP SUP 2022 DOI 10.1109/TASC.2022.3218072

Microwave Photon Detector Based on Current Biased JJ

Few photons (5 zJ) sensitivity. Large room for improvement. Work ongoing.

IEEE TRANS APP SUP, VOL. 32, NO. 4, 2022; doi: 10.1109/TASC.2022.3148693

IEEE TRANS APP SUP 2022 DOI 10.1109/TASC.2022.3218072

Nanowire Transition Edge Sensor

Tune transition temperature by proximity effect

TES Nanowire NEST

A (Red) AlCu B (Blue) Al electrode IP (Yellow) Al-O tunnel probe

F. Paolucci et al., J. Appl. Phys. 128, 194502 (2020)

Direct measurement of nanowire properties:

- Tc
- Transition steepness
- e-ph coupling
- bilayer E_{gap}

TES Nanowire NEST

Lenght	1.5 μm
Width	100 nm
t _{Al}	10.5 nm
t _{Cu}	15 nm

t	5-10 ms
С	5×10 ⁻²⁰ J/K
G	5×10 ⁻¹⁵ W/K
σ_{n}	100-200 GHz
NEP	30-50 zW/√Hz

Antenna Characterization at Room Temperature

Finline design for collecting signal from waveguide to coplanar chip where TES is deposited

Antenna Characterization at Room Temperature

Observed variation of thermistor resistance at finline resonant frequency (33 GHz)

S11 measurements with VNA gives compatible results.

Measurement of NTC e PTC thermistors

Waveguide with antenna and TES will be termally anchored, with OFHC components realized in Pisa mechanical workshop, to the mixing chamber plate and connected to the SQUID.

