Tests Beam/MonteCarlo comparisons

Munich , May 2006

T. Carli, B. Dekhissi, M. Monnier, V. Niess, C. Serfon, A. Soukharev, J. Toth, G. Unal

Context

- Beam test 2001-2002 (not CTB).
- Will more emphasize on EMEC where situation more complicated than EMB (Varying gap, sampling fraction, HV...)
- Simulation performed under GEANT4
- Signal reconstruction :
 - EMB : Current map
 - EMEC : Various methods tested
- Test beam simulation has been Updated to knew framework, Going Live in 11.5.0
 - G4AtlasApps (common to CTB)
 - GeoModel Description of TB
- Many improvements propagated to G4 simulation :
 - Geometry (sagging, varying slant angles)
 - "Signal reconstruction" (gap adjustment or charge collection)

Barrel

- Good description of energy deposition in various samplings
- G4.8 seems to give better results as G4.7 (e.g. energy resolution)

Energy deposit in the samplings

May 2006

Barrel

- Use of MC to develop calibration scheme to optimize linearity and energy resolution
- Once again, some differences between G4.7 and G4.8

 Concerning absolute energy scale :

Assuming calo is simple condensator and knowing Lar drift time:

 $\langle f_{\rm I/E} \rangle \approx 15 \, {\rm nA/MeV}$

From calculation using field-Maps:

 $\langle f_{\rm I/E} \rangle = 14.2 \, \rm nA/MeV$

From comparison of data and MC:

G4.7: $f_{I/E} = 16.0 \text{ nA/MeV}$ G4.8: $f_{I/E} = 14.4 \text{ nA/MeV}$

Endcap

- As already said, situation more complicated :
 - Gap and sampling fraction = f(eta)
 - HV sectors (7 in outer + 2 in inner wheel)
- No current maps available for signal reconstruction. Various methods tried :
 - Gapadj : Basic version of gap adjustement
 - Gap_e : Same as gapadj, but with drift velocity, description of HV sector and ion recombination
 - Gap_se : Same as gap_e but signal produced less than 150µm from electrodes killed (electronic integration time)
 - Charge collection : detailed Electric field map

Fine structure (HV strips, changes of middle's length well reproduced)

May 2006

Munich

Response : Test beam vs Simulation for Electrons

Apart from suppression, no clear differences between various improvements of gap adjustment

About HV Values

HV Chosen to ensure flat response in η (ATLAS-LARG-NO-47) but ...

HV values are set as following :

$$\frac{I_0}{E} \propto F_s \times \frac{v_d}{gap}$$

 V_d : Drift velocity : updated with detailed expression (ATLAS-LARG-99-008) + Ion recombination Included \Rightarrow no significant change

 F_s : Sampling fraction, updated from GEANT 4 simulation (10.0.1) \Rightarrow even worse

Conclusion : The model is not accurate enough for showers (~10 %) A detailed simulation is required to adjust HV values

Electrons : φ modulations

$$a_0 \left(1 + \sum_{i=1}^2 a_i \cos\left(2i\pi\left(\phi_{abs} - \Delta\phi\right)\right) + b_1 \sin\left(2\pi\phi_{abs}\right) \right)$$

- Evolution of cosine term in agreement with data, but amplitude too high
 Clean disconcement for sinus and phase
- \cdot Clear disagreement for sinus and phase term at high η

Munich

Electrons : ϕ modulations

Evolution of φ modulations with energy (ECCO, cell (29,19))

• Here again, coefficients smaller for data than for simulation

Electrons : ϕ modulations

Differences in $\Delta \varphi$ could be related to systematics in η ?

$$a_{1}^{TB} = a_{1}^{MC} - b_{1}^{MC} \frac{\sin(2\pi(\varDelta \phi^{TB} - \varDelta \phi^{MC}))}{\cos(2\pi\varDelta \phi^{TB})}$$
$$b_{1}^{TB} = b_{1}^{MC} \frac{\cos(2\pi(\varDelta \phi^{TB} - \varDelta \phi^{MC}))}{\cos(2\pi\varDelta \phi^{TB})}$$

Not consistent with the observed shift The effect is too small ...

Sagging & Slant angle : Studies under progress ...

Conclusions

- Good agreement on energy deposition, HV corrections energy resolution
- Main issue : φ modulations still not well described, work under progress to understand differences
- G4.8 seems to give better results (energy resolution, absolute energy scale) than G4.7
- Many updates implemented in TB simulation 11.5.0 (Geometry description, Suppression, Configuration parameters, ...) that require validation

EMEC

- Simulation made with 10.0.1 (release available on the grid)
- Noise and Xtalk in strips added in simulation
- No sagging
- Studies on muons as well as on electrons :
 - Muons:
 - n scan in outer wheel with ~100k events by cell
 - Electrons :
 - η scan in outer wheel with ~10k events by η cell value
 - Energy scan (10 GeV to 150 GeV) in one cell. ~10k events by cell and energy

Electrons : Energy deposition

Energy fraction deposited in the three sampling of the EMEC

- Energy deposition well reproduced by simulation
- Disagreement in the 3rd sampling due to inductive Xtalk

Electrons : HV corrections

Parameters of the HV correction for data and simulation :

- a : Slope
- β : Normalisation to the beam energy

η=2.5				\checkmark		
HV sector	Data		New simulation		Old simulation	
	α	β	α	eta	α	β
B1	0.46	1.12	0.45	1.12		822
$\mathbf{B2}$	0.50	1.08	0.38	1.09	0.29	1
$\mathbf{B3}$	0.47	1.055	0.44	1.07	0.31	1
$\mathbf{B4}$	0.46	1.045	0.39	1.040	0.32	1
$\mathbf{B5}$	0.49	1.01	0.46	1.025	0.33	1
B6	0.55	1.00	0.41	1.015	-	