Pileup Effects on Jet Response

Doug Schouten dschoute@sfu.ca

Simon Fraser University

04/05/06

Pileup

the term 'pileup' refers to a couple of things:

- \blacksquare in each bunch crossing there are $\langle n_{mb}\rangle\sim 23$ inelastic minimum-bias collisions
- in the LAr, the digitized shaping pulse lasts 600ns, or 24 bunch crossings

Pileup

the term 'pileup' refers to a couple of things:

- \blacksquare in each bunch crossing there are $\langle n_{mb}\rangle\sim23$ inelastic minimum-bias collisions
- \blacksquare in the LAr, the digitized shaping pulse lasts 600ns, or 24 bunch crossings

on the nature of pileup....

- from NIM A338 (1994) 467-497 expect that $\sigma(E_{meas}) \propto \sigma(E_{dep}) \int g^2(t) dt$
- Chollet showed in CAL-NO-75 (1995) that there are statistical correlations in pileup E_T distributions
- $\langle E_T \rangle = 0$ with luminosity-dependent fluctuations

Pileup Correlations

The effect is easiest to demonstrate by considering uncorrelated energy in N cells

[GeV]

top row (endcap): $(\eta, \phi) = (2.5, 1.5)$, bottom row (barrel): $(\eta, \phi) = (0.5, 1.5)$

Minimum Bias

probablity to reconstruct pileup jet

- Rome (003014) M1 minbias sample
- \blacksquare ratio of events that have $N_{jets} \geq 1$ and $p_T^{leading} \geq {\rm threshold}$

p_T cut	11 5 mb/xing (%)	18 mb/xing (%)
20.0 GeV	33.5	42.6
30.0 GeV	15.1	21.9
40.0 GeV	8.8	12.8

events reconstructed with 11.5 mb/crossing

Warning!

 $9.4.0 \leq R \leq 10.4.0$ pileup digitization is broken. Don't use it. I tried to. Bad move.

Jet Response

- \blacksquare exploit balance between p_T^{γ} and p_T^{jet}
- \blacksquare assume EM-scale well calibrated with $Z \rightarrow ee$

Missing E_T Projection

select the leading good γ (isolation $E_T < 0.15$, isEM % 0x007ff = 0)

 \blacksquare match to leading jet in $\Delta\phi$ window

• calculate jet response
$$R_{jet} = 1 + MPF = 1 + \frac{\hat{n}_{\gamma} \cdot \not E_T}{E_T^{\gamma}}$$

more on this method in In-Situ Calibration with Initial Running Conditions on Friday

Jet Response

in calculating the jet response ...

- you may match the wrong jet (you chose a pileup jet, instead of the hardscatter jet)
- you have pileup energy in your photon and jet
- your $|\vec{E}_T|$ is not well measured

Used a truth vertex filter to identify particles originating from the hardscatter, and looked at the number of times a pileup or underlying-event jet is chosen.

generation $p_T > 25.0$ GeV (left) 85.0 GeV (right), low-luminosity

Pileup Fakes

generation $p_T > 25.0$ GeV (left) 85.0 GeV (right), 11.5 mb/xing

E_T Offset in Jets from Pileup

interesting notes

- there seems to be two regimes the luminosity dependance is higher in the barrel
 could this be due to the tile pulse shape (no negative tail!)
- **p**ositive shift contradicts earlier plots w/ $\langle E_T \rangle \leq 0$

Missing E_T Measurement

• how much does H1-weighting affect σ for $\vec{\not{E}}_T$?

should we expect a luminosity-dependant noise cut prior to applying H1 weights?

Jet Response

left: response with no pileup, right: response with 4.6 mb/xing

Current Status & Workplan

many things to report on ...

- \blacksquare first looked at MPF w/o pileup; see how FSR/ISR affect pT balance, validity of $\Delta\phi$ cut, low- E_T bias
- generated large datasamples @ low (4.6 mb/crossing), medium (11.5 mb/crossing), and high (23 mb/crossing) luminosities
 - studied/studying luminosity dependance of in-situ calibration: pileup offset, E_T measurement, jet muliplicity (and matching)
- sidetracked into looking @ H1 calibration w/ pileup because of bug in 10.0.1

Current Status & Workplan

many things to report on ...

- \blacksquare first looked at MPF w/o pileup; see how FSR/ISR affect pT balance, validity of $\Delta\phi$ cut, low- E_T bias
- generated large datasamples @ low (4.6 mb/crossing), medium (11.5 mb/crossing), and high (23 mb/crossing) luminosities
 - studied/studying luminosity dependance of in-situ calibration: pileup offset, E_T measurement, jet muliplicity (and matching)
- sidetracked into looking @ H1 calibration w/ pileup because of bug in 10.0.1

in the future ...

- Iuminosity dependence of response (up to ultra-high luminosity)
- jet reconstruction @ different luminosities (efficiency, optimum cone size, etc)
- statistics, statistics, statistics generate more data
- \blacksquare look at 2-jet events and determine the mis-ID rate for γ