Projects of the Electronics Division

Project Review 2006

- Projects in 2006
- Status of Selected Projects
 - H1 Jet-Trigger
 - MAGIC-I Multiplexer / FADC
 - MAGIC-II Camera
 - MDT
 - HEC-II

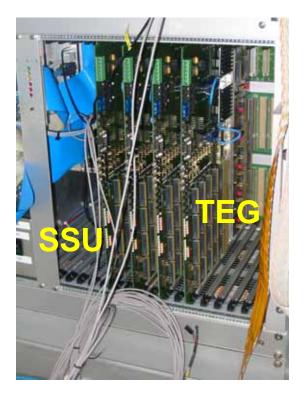
Projects in 2006

- Main Projects
 - H1 Jet-Trigger at DESY (EE)
 - HEC Hadronic Endcap Calorimeter (EA, EE)
 - MAGIC-I Air Cherenkov Telescope Camera (EP)
 - MAGIC-II Air Cherenkov Telescope Camera (EA, EE, EP)
 - MDT Muon Drift Tube Chambers (EA)
- Additional Projects
 - Cresst (EP)
 - Gerda (EE, EP)
 - Muon Cooling (EP)
 - SCT (EA)
 - Support for the Semiconductor Laboratory (EP)
- New Projects (started in late 2006)
 - HEC-II HEC Electronics Upgrade for the SLHC (EE)
 - MDT-II MDT Electronics Upgrade for the SLHC (EE)

Group Naming

EA: Elektroanlagen

EE: Elektronik Entwicklung


EP: Elektronikproduktion

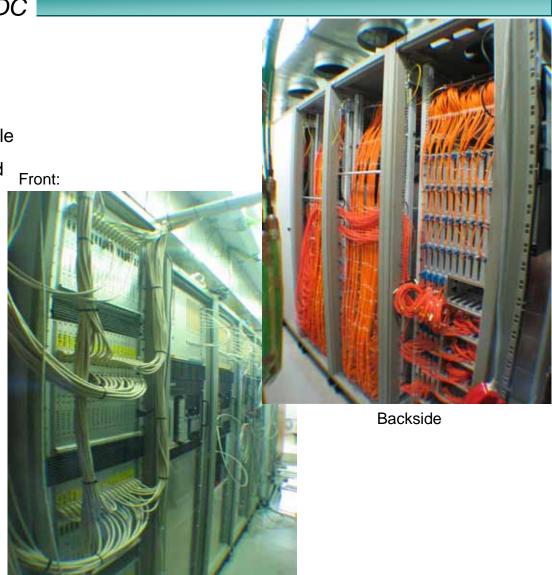
H1 Jet-Trigger

Work on the H1 Jet-Trigger has finished!

 First L3 test triggers using Jet-Trigger 	June 06
• ACS installation completed, covers full $\boldsymbol{\theta}$	July 06
• TEG debugged	Oct 06
• H1 green light - activation JET-Trigger at L1/L3	Dec 06

MAGIC-I Multiplexer/ FADC

• Test of the whole System in the Lab (January - March)


- Installation in La Palma in April 2006
 - all optical components & all multiplexer electronics and all internal cabelings
 - 325 trigger pixels connected to both (Siegen & MUX) FADCs
 - 4 (of 5) crates & 2 (of 10) Acqiris FADC boards

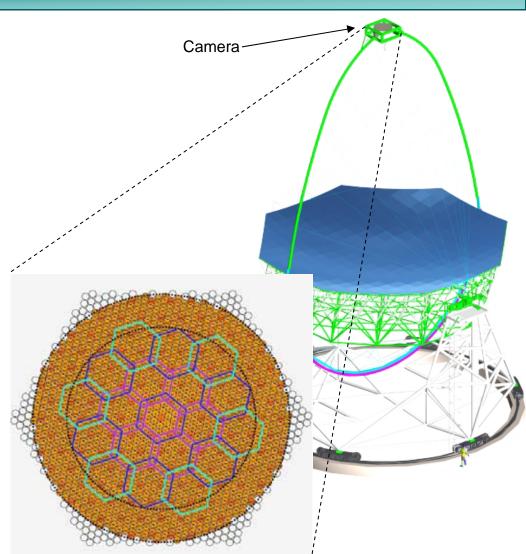
MAGIC-I Multiplexer/ FADC

Some Technical Data:

- 2 GHz sampling (0.5 ns per sample)
- 40 ns (80 samples) per pixel per sample
- 10-bit digit hardware sample converted to 16-bit value (2 bytes - linearization)
- 16 channels (pixels) per FADC
- 8 FADC channels (4+4) per crate

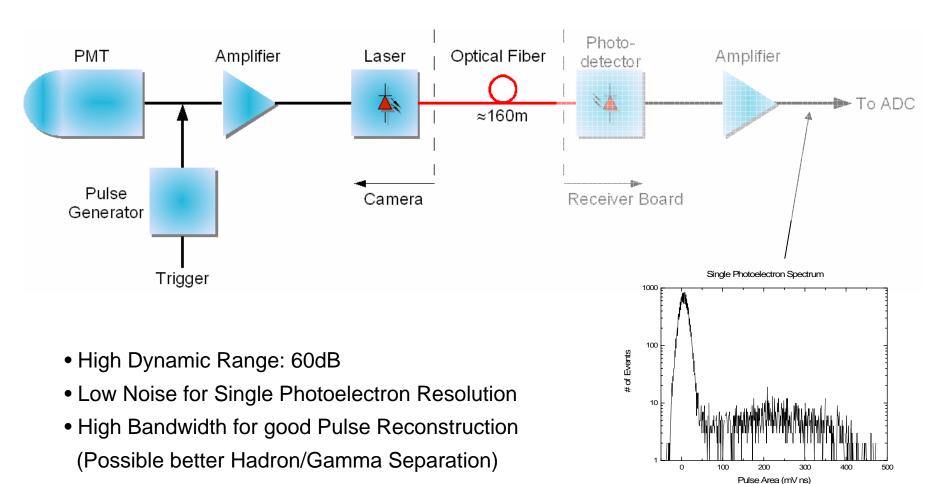
MAGIC-II Overview

Main Task:

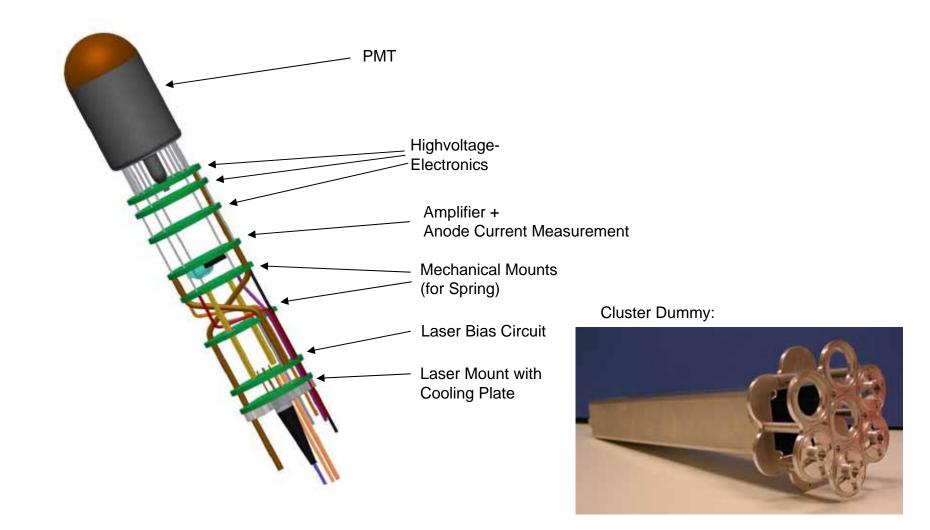

- Development of Camera Electronics
 - Signal Transmission System
 - Camera Control System
 - Test Signal Generation
 - Power Distribution

Camera:

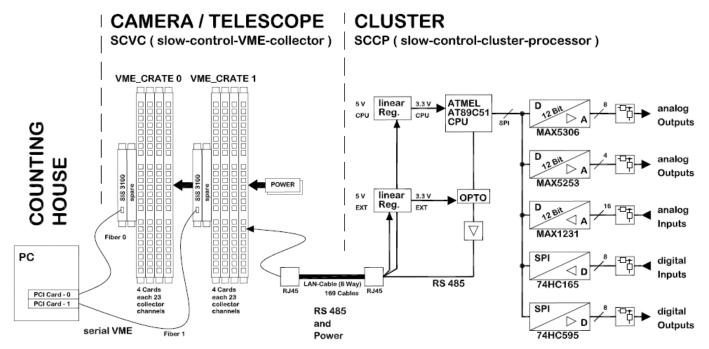
• 1039 Pixels


(Photomultipiers + Signal Transm.)

- 7 Pixels are grouped into a Cluster
- Each Cluster has its own Test Pulse Generation and Control System


MAGIC-II Signal Transmission

Actual Bandwidth is approx. 2GHz



MAGIC-II Pixel Design

MAGIC-II Slow Control

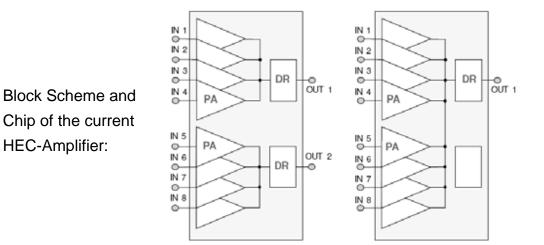
Each Cluster has its own Microcontroller for

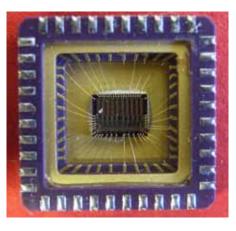
- High Voltage Setting
- Laser Bias Setting
- PMT Anode Current Measurement
- Temperature Measurement
- Test Pulse Control (Level Setting)

Muon Drift Tube Chambers (MDT)

- Electrical Installation of 88 Chambers
- 15 High Voltage Splitters and Cabeling
- 7 CanBus Power Supplies

This is not the Training for the next Mount Everest Expedition.

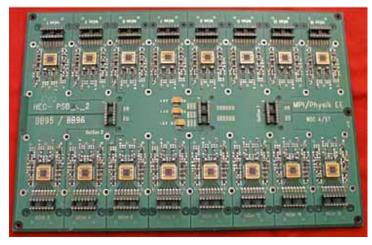

Upgrade of the Hadronic Endcap Calorimeter (HEC-II)


New R&D-Project for 2007-2009:

• SLHC luminosity upgrade leads to increased particle rates

- -> Improved Amplifiers for the ATLAS-HEC (Factor 10 higher Radiation Hardness)
 - -> Reduced Structure Size in Amplifier Chips (e.g. 250nm or less)
 - -> Possible use of a different Technology (SiGe instead of GaAs)

Project has started with contact to three possible Technologie Partners: Institute for Semiconductor Physics (Frankfurt/Oder), Triquint, Ommic



Some Specifications for the new Amplifier:

 Radiation Hardness 	Neutrons 1.5 ·10 ¹⁵
	Protons 2.10 ¹²
	Gammas 50 kGy
 Power Consumption 	<250mW/Chip
 Dynamic Range 	10 ⁴
 Input Impedance 	$50\pm 2~\Omega$
 Gain Variation 	< 2%
Xtalk	< 2%

Currently used Board with 16 Amplifiers:

Apprentices Project

20 Apprentices 12 in Electronics 8 in Mechanics

Common Project: Racing Car

Technical Data

- Mechanics are fabricated by automatic CNC-Machining
- Controlled by Microcontroller
- Way Recognition by Optical Sensors
- 7 Different Velocities
- Reverse and Forward Speed
- Flashing Signal for Left and Right Turns
- Operating Time about 2 Hours

