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Outline

® (lauber Gluons: What? and Why?

® Review of “Glauber Region” in classic factorization
literature: Collins et al, Bodwin

® (Glauber Gluons in EFT

power counting, gauges, ...
literature: Liu & Ma, Idilbi & Majumder

here: e direct computation of Glauber graphs
(rules for loop integrals, matching IR,
obtaining unambiguous results)

e 0-bin’s (avoid double counting of other modes)

e forward scattering, glaubers in inclusive
processes, glaubers in exclusive processes



Glauber Introduction

® 3 “Coulomb” gluon for forward scattering of collinear particles

+ — 1
Glauber: g n-collinear: PP~ Q(N%, 1, \)
p,u NQ()‘27>‘27>‘) >
+ — 1 n -collinear: PP~ Q(1, 2%, \)
| forward scattering that changes
2 momentum space: —- _|_ - momenta, but leaves collinear
* k7 directions and large momenta intact
-k
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Y position space:  d(zT—yT)é(xz” —y7) (z1L —y1 )*T(—¢€)

instantaneous in T and £, ie. ¢t and z
olishell, purely virtual, never appears in final states

e NRQCD analogy: potential gluons 1
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® where can it show up? forward scattering : \/

hard scattering: M
. . X
inclusive MM — X~~ vy
“active” or “spectators” M
active-active active-spectator spectator-spectator

v

can potentially spoil factorization

as an external field:

g q
eg. e +nucleus — e +Jet(ky)+ X LLLTE%E%E - gg;ﬂf
n, .te n

Idilbi & Majumder (cf. SCET 2009) AP AP
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Traditional Factorization Approach to Glaubers
Collins, Soper, Sterman 1985

inclusive pp — X010~ Bodwin 1985
Collins, Soper, Sterman 1988

Glaubers arise as an obstacle when canceling soft gluons to derive

d o d Inc a
o0 dq2dY Z/ : fbH 1 z_a ?76] “) fi(£a7u) fg(fb,/J)

== prove that in sum of graphs that we can deform contours out of
“Glauber Region” of momenta at leading power

n -collinear jet with soft attachments:

1
IT(QE) — H B . kQ‘J_
> (g, +10) — Zj T

1
Fr(q) =] — T
20(qp —10) =2, 2;@
want to deform contours to soft region

|q£ |, drop qj’s
but we are trapped by final state poles




n-collinear jet with soft attachments:
Must prove that “R” = Rest of the graph
(n-collinear, soft, hard)

is independent of “V” = which soft
vertices are on left or right of the cut.

Then take Z for n-collinear

cuts
to cancel final state interactions so we

are free to deform the contours.

Must integrate over | - momenta internal
to the jet and for external partons.

“R” is independent of “V”:

Use x- ordered pert. theory. For any two V’s can match up orderings where
IT and I7. agree. Soonly Fr(ge, V). Summing over all final states this
V dependence cancels.

Comments:  Soft and Glauber are mixed, no separate identity:

Proof relies heavily on sum over final states. Hence its
hard to extend to cases that are not fully inclusive.



Modes for this talk:

gL ~ QA

perturbative

SCET with Glauber

glauber

usoft

collinear

soft O

Glauber (A2, %, )
n-collinear (A%, 1, 0)
n-collinear (1, 2%, \)
Usoft (A%, A%, \2)
Soft ()‘7 )‘7 )‘)
NRQCD analogy
potential j,
| /
usoft :

soft

jets



Modes for this talk:

gL ~ QA

perturbative

SCET zero-bins

glauber G — Gy

usoft U no subt.

Glauber (A2, %, )
= . 2
n-collinear (A, 1, M) jets
n-collinear (1, 2%, \)
Usoft (A%, A%, \2)
Soft ()‘7 )‘7 )‘)

NRQCD zero-bins Manohar & I.S.

P subtractions are

potential
power suppressed

usoft U no subt.

collinear C — Cy — Cg + Cg,,

soft S — Sy — Sag + Sg, soft

S — Sy — Sp + Sp,



Glauber Lagrangians

In NRQCD the potential gluon is an oftshell mode, and Luke, Manohar,

does not need to be added to the Lagrangian.

In NRQC
for potent

(using full

We can ta

Rothstein
Pineda & Soto

D there is no sense in talking about Gauge Transformations
ial gluons. Matching to V' is gauge independent
theory gauge symmetry & e.o.m.).

k about power counting for I, without introducing

a potential gluon field.

Iterations

of V' yield Green’s function for Schroedinger Equation



Glauber Lagrangians

Apply this to Glaubers:
LG — Z V(pJ_api)gn,pign,pLéﬁ,—pigﬁ,—pL
LD S,
V(pi,p)) = b =)

any covariant gauge

No “glauber gauge transformations”.

But an auxiliary Glauber Lagrangian is useful for calculations:

LoT = fnﬁn Agfn—l-ﬁ ﬁﬁu‘lgfﬁ
+ AgPLAGMJr...

Can piCk: A'lé ~ )\2 (consistent with Liu & Ma, Idilbi & Majumder)

If A‘é is treated like an external source, as it was in Idilbi &
Majumder, then we can consider LA™ terms to be source couplings.
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Glauber Lagrangians
Apply this to Glaubers:

X LG — Z V(pJ_api)gn,pign,pLgﬁ,—pigﬁ,—pL
p1,p| | S,
VpLl,p1) = (p" —p.)2 ..

P :
any covariant gauge

No “glauber gauge transformations”.

But an auxiliary Glauber Lagrangian is useful for calculations:

L™ = gn% n-Ag&n + é?fng n-Ac&n

+ ALPT Agu+ ...

higher order: 0AgAgAg  leading order:
an%;Lﬁn aAGAsoftAsoft

(consistent with Liu & Ma, 8AGAGAusoft Jsoft Ac dsoft
Idilbi & Majumder)
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Glaubers do not generically give Wilson lines:

loop momentum: k" ~ (A%, A%, )
red propagators see k™

blue propagators see k£~
everyone can see k|

1
dk T T —

shifting £~ this looks

° ° _I_
no shitt in k™ can makes like a Wilson Line

this look like a Wilson line

Hence the “proof” of Liu and Ma of decoupling of Glaubers in SCET
via Wilson lines fails.

12






Forward Scattering Graphs  (abelian)

1
/ddk TITE TETRE
k2 (kL —qu)?[kt +pt — BE2LE 4 40] [ -k~ +p/— — B2 +40)

D p

1
/ddk CTET T CETISE
ki(kL—ql)2[—k+—|—p+— qLtPL—R1 —I—iO][—k_—l—p/_— pL/ L —|—i0]

p p

/

_|_
dk 1 ”

or kT +A+i0
dim.reg. is irrelevant here

not removed by o-bin subtraction
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/dk+ 1 =i
o kt+A+i0 2

Add the Two Graphs first:

h
A

Principal Value:

kt 440

Parity Average:

{ 1

kEt 4140

1
_ - +

—k* 440

| = —ima(k™)

Cutoft at Large Momentum:

/dlﬁ{ 1 .
27 Lkt + A4+ 10 —k+ + B +10

- 2 1 1 2 1 2

*
.—‘

2 1 2 1 I 2

DO | —

% =
*
2y *

-/

*
*
.—’

|

dk™

dk™ O(A2 — k+2)

2T

kt +10 —A +10

(B+ A)

AL »
+z0): 2@

o (k+ + A+ i0)(—kt + B + i0)
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Three Glaubers

new wrinkle: order of integration

dk+de+ . e
/(2”)2 FFr ATk — 1 Br —07 :(7) ?

neither of these are correct.

L 4 “
4
. a,

Add Graphs first:
— plus integrals = (—i)?
% avg. over bottom perms, then _ 1 (—i)
T plus and minus integrals 3!
e
— 5 emen) B — k0N - )2
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1 A"k 1
1 P - =
topagators q: ’ / (2m)" k2 (gL — k)2’ /

Fourier transform to de-convolute them

A"k d"0 | 1
2m)2n) kT (0L —k1)?(qL —£1)?

i&g = 7 (/g e”EQ_QEF(—e) M2€‘$J_‘2€

All Glaubers

*
]

— " - 1 = .
ag ‘|‘ o :Z '(i¢g)m+1:62¢G—1

M z 3 & LS
L= ] —

Forward Scattering Amplitude: / d°x | e"d+*L (eiC’BG(“) — 1)

(well known eikonal result)
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Why are these the correct graphs to sum?

What about collinear or usoft radiation?

/ _ / same for crossed graphs

—0 _ o same for virtual graphs

same for higher orders

/dk+ 1 -
or (kt + A +40)(kt + B +i0)

Radiation does not interfere with
the Glauber exponentiation!
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: » ~ 1~
Fwd scattering: e — 1 = ipg — §¢é + ...

Hard scattering: H oi%c

Hard Scattering sets a reference time (t=0),
distinguishes initial and final state

Provides an “End” for the exponentiation
(ie. a graph with no Glauber exchange)

x | space is important. FT of a phase is not a phase.

Nonabelian? Due to the non-abelian exponentiation theorem
(Gatheral, Frankel & Taylor) we will get exponentiation.
There are nonabelian corrections to the phase.

It will not be one-loop exact.

How do o-bins change the abelian calculation?
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Consider Full Theory matching with o-bin terms in SCE'L:

T = 2 ! ,U2
2 = )
full: &+ 2 = = [ - In _}
& %, S t Ler —t
G —Guy
— m[l . u2}+m[1 1]
, P = n— = an
Glaner. —|— ' t Ler —1 t Leyv €IR
™ » * * . 1 2
_im [ L }
t Leuv —

counterterms also exponentiate

ba — dG
Usoft:

imor 1 1
T = [ }
€EIR €UV

has the IR divergence
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Collinear? ! !
\/ \/+_X:p+{—p+zo

\ zerobin pt #0

no such vertex at LO cf. Neubert & Hill
(such a vertex would spoil factorization)

A bit strange from the point of view of the Threshold Expansion.

In that case the full forward scattering box result comes

from collinear. (Smirnov)

But in SCET one uses the equations of motion (& momentum
conservation) to show that the above vertex is absent.

So there need not be a simple correspondence.
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1
_|_ \ EIR S 0AY, }

consistent with the SCET usoft field redefinition?

Is I

Yes: 1 with path here.
es: but must be careful with path dependence here Chay, Ki n%, I oo

I = Arnesen, Kundu, IS
Lo=— Z V(pLapL)fn,pifn,pLfﬁ,—pifﬁ,—pL

pPL,p|
» Lo = Z V PLaPL)fn D Yoofn pJ_fn —p Yoo€n —py
pPL pJ_ s
Y>° = Pexp (zg/ ds n - Ays(ns))
Too
Y>° = Pexp (zg/ ds n - Aus(ﬁs))

Our Usoft contains a Glauber region and that is fine! When we
consider hard scattering, this is a phase that does not cancel out until
we square the amplitude.
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Hard Scattering, “Ends”, and o-bins
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Hard Scattering, “Ends”, and o-bins

Active - Active

G Gu

/ dkm dktdk~ 1 1 B 1
(2m)» (2m)2 k2 | (kT + A+i0)(—k—+B+1i0) (kT + A’ 4+i0)(—k— + B’ +10)

\ \

has k| no k.
— 0

consistent with dropping Glaubers in standard matching computation
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Active - Spectator

E(x1,)E(xs1)
P1g FT
B (pfqpfq) (pﬁqpiq) 11 /
-\ pr pi 7/ Pag Pig
p2q
= (-1/2)
/ dek 1 /
(2m)? g2 [ gt +pfq—<kip£%q)2+i0} [kt +pf, — (’“:f D 1 i0] [ — k= + pyy — (“pfq)2+fz0}
B (pfqpfg)(piqpé%) 1 / d"k 1 1
-\ pp py / pas J (2m)" kL (kL — pig)?
Sum up Glaubers

Gu converts this IR pole to UV
I just like in fwd. scatt. graphs

\E(

ZUU_) (ﬂfu) é($1¢)

A

Glas) = ettole)
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A

G(x1) = oG (1)
}\A = E(z11)E(z21) G(11)
overall phase

2

2

Phase Space: / dpiy |A(p1Lq)

:/dx%L |A(xu)|

(so do not measure pj; )
N

A 2 Glauber
d? G
}\A N{m/ o | (xu)| phase cancels
AN
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Active - Spectator cross check (basically consistent

Glauber
scalar graph

Usoft .\|

scalar graph

full theory
scalar graph

collinear
scalar graph

with Liu & Ma (2010) )

1 1711 1
= srvilan T G)
ST s't €IR plq—

t = piz (1 +p1,/p1y)

ool 1[1 :1n(“T22)}

8 s't EUV plq
\With Gy
T 11 [ 1 1 }
i N 8 s't €IR EUV

C—Cy—Cg+ Cgqg,
Im=0

Note: a phase in collinear would be bad

since it would be hard to see it cancel
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Spectator - Spectator

Spectator - Spectator

FT

&

two poles for kT

two poles for k£~

d”/@ 1

Active - Spectator

A

E(z11)E(x21) G(z11—221) G(z11)

a phase again

2m)" (kL + pag)? (kL — pig)?

sum
glaubers \ E(zy)

phase again

$2J_) é(%L —5132¢)

etc.
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Continuing in this manner we will get an alternate proof of
factorization for inclusive Drell Yan.
(Though recall that my calculations here were abelian.)

Advantage: This method is more readily adapted to
determine which measurements on the

hadronic final state still allow Glaubers to cancel.
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(GGlaubers in Exclusives?

B — nm We tactorize the amplitude.

All partons are ACTIVE.

Usoft subtractions are not
appropriate here
(a mode below confinement scale).

Glaubers sum to phase for active lines G (x1 — 0)
that is independent of the details of the hard vertex, and still
cancel when we square amplitudes.

This is why in SCET that “Regge” effects (Donoghue et.al.) do not
spoil factorization at leading power.

Caveats: No where in this talk did I account for rapidity
divergences or SCETy type o-bin subtractions,
which sometimes show up in the exclusive case.
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